shapleyBlockEstimation {sensitivity}R Documentation

Computation of the Shapley effects in the Gaussian linear framework with an unknown block-diagonal covariance matrix

Description

shapleyBlockEstimation estimates the Shapley effects of a Gaussian linear model when the parameters are unknown and when the number of inputs is large, choosing the most likely block-diagonal structure of the covariance matrix.

Usage

shapleyBlockEstimationS(Beta, S, kappa=0,  M=20, tol=10^(-6))
shapleyBlockEstimationX(X, Y, delta=NULL, M=20, tol=10^(-6))

Arguments

Beta

A vector containing the (estimated) coefficients of the linear model.

S

Empirical covariance matrix of the inputs. Has to be positive semi-definite matrix with same size that Beta.

X

Matrix containing an i.i.d. sample of the inputs.

Y

Vector containing the corresponding i.i.d. sample of the (noisy) output.

kappa

The positive penalization coefficient that promotes block-diagonal matrices. It is advised to choose kappa=0 to get the largest block structure such that the maximal block size is M.

delta

Positive number that fixes the positive penalization coefficient kappa to 1/(p n^{delta}). It is advised to choose delta to 2/3 for a positive penalisation or delta=NULL to get the largest block structure such that the maximal block size is M.

M

Maximal size of the estimate of the block-diagonal structure. The computation time grows exponentially with M.

tol

A relative tolerance to detect zero singular values of Sigma.

Details

If kappa = 0 or if delta = NULL, there is no penalization.

It is advised to choose M smaller or equal than 20. For M larger or equal than 25, the computation is very long.

Value

shapleyBlockEstimationS and shapleyblockEstimationX return a list containing the following compopents:

label

a vector containing the label of the group of each input variable.

S_B

the block-diagonal estimated covariance matrix of the inputs.

Shapley

a vector containing all the estimated Shapley effects.

Author(s)

Baptiste Broto, CEA LIST

References

B. Broto, F. Bachoc, L. Clouvel and J-M Martinez, 2022,Block-diagonal covariance estimation and application to the Shapley effects in sensitivity analysis, SIAM/ASA Journal on Uncertainty Quantification, 10, 379–403.

B. Broto, F. Bachoc, M. Depecker, and J-M. Martinez, 2019, Sensitivity indices for independent groups of variables, Mathematics and Computers in Simulation, 163, 19–31.

B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: comparisons with Sobol' indices, numerical estimation and applications, International Journal of Uncertainty Quantification, 9, 493–514.

A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs, SIAM/ASA Journal of Uncertainty Quantification, 5, 986–1002.

See Also

shapleyLinearGaussian, shapleyPermEx, shapleyPermRand, shapleySubsetMc

Examples


# packages for the plots of the matrices
library(gplots)
library(graphics)


# the following function improves the plots of the matrices
sig=function(x,alpha=0.4)
{
  return(1/(1+exp(-x/alpha)))
}


# 1) we generate the parameters by groups in order

K=4 # number or groups

pk=rep(0,K)
for(k in 1:K)
{
  pk[k]=round(6+4*runif(1))
}
p=sum(pk)
Sigma_ord=matrix(0,nrow=p, ncol=p)
ind_min=0
L=5
for(k in 1:K)
{
  p_k=pk[k]
  ind=ind_min+(1:p_k)
  ind_min=ind_min+p_k
  
  A=2*matrix(runif(p_k*L),nrow=L,ncol=p_k)-1
  Sigma_ord[ind,ind]=t(A)%*%A + 0.2*diag(rep(1,p_k))
}


image((0:p)+0.5,(0:p)+0.5,z=sig(Sigma_ord),col=cm.colors(100), zlim=c(0,1),
      ylim=c(p+0.5,0.5), main=expression(Sigma["order"]), 
      cex.main=3,ylab = "", xlab = "",axes=FALSE)
box()


Beta_ord=3*runif(p)+1
eta_ord=shapleyLinearGaussian(Beta=Beta_ord, Sigma=Sigma_ord)
barplot(eta_ord,main=expression(eta["order"]),cex.axis = 2,cex.main=3)


# 2) We sample the input variables to get an input vector more general

samp=sample(1:p)
Sigma=Sigma_ord[samp,samp]

image((0:p)+0.5,(0:p)+0.5,z=sig(Sigma),col=cm.colors(100), zlim=c(0,1),
      ylim=c(p+0.5,0.5), main=expression(Sigma), 
      cex.main=3,ylab = "",xlab = "",axes=FALSE)
box()


Beta=Beta_ord[samp]
eta=shapleyLinearGaussian(Beta=Beta, Sigma=Sigma)
barplot(eta,main=expression(eta),cex.axis = 2,cex.main=3)




# 3) We generate the observations with these parameters

n=5*p #sample size


C=chol(Sigma)
X0=matrix(rnorm(p*n),ncol=p)
X=X0%*%C

S=var(X) #empirical covariance matrix
image((0:p)+0.5,(0:p)+0.5,z=sig(S),col=cm.colors(100), zlim=c(0,1),
      ylim=c(p+0.5,0.5), main=expression(S), 
      cex.main=3,ylab = "", xlab = "",axes=FALSE)
box()

beta0=rnorm(1)
Y=X%*%as.matrix(Beta)+beta0+0.2*rnorm(p)



# 4) We estimate the block-diagonal covariance matrix 
# and the Shapley effects using the observations
# We assume that we know that the groups are smaller than 15

Estim=shapleyBlockEstimationX(X,Y,delta=3/4, M=15, tol=10^(-6))

eta_hat=Estim$Shapley
S_B=Estim$S_B

image((0:p)+0.5,(0:p)+0.5,z=sig(S_B),col=cm.colors(100), zlim=c(0,1),
      ylim=c(p+0.5,0.5), main=expression(S[hat(B)]), 
      cex.main=3,ylab = "",xlab = "",axes=FALSE)
box()

barplot(eta_hat,main=expression(hat(eta)),cex.axis = 2,cex.main=3)


sum(abs(eta_hat-eta))

[Package sensitivity version 1.30.0 Index]