johnsonshap {sensitivity} | R Documentation |
Johnson-Shapley indices
Description
johnsonshap
computes the Johnson-Shapley indices for correlated input relative importance.
These indices allocate a share of the output variance to each input based on the relative
weight allocation (RWA) system, in the case of dependent or correlated inputs.
WARNING: This function does not work yet.
Usage
johnsonshap(model = NULL, X, N, rank = FALSE, nboot = 0, conf = 0.95)
## S3 method for class 'johnsonshap'
print(x, ...)
## S3 method for class 'johnsonshap'
plot(x, ylim = c(0,1), ...)
## S3 method for class 'johnsonshap'
ggplot(data, mapping = aes(), ylim = c(0, 1), ..., environment
= parent.frame())
Arguments
model |
a function, or a model with a |
X |
a data frame (or object coercible by |
N |
an integer giving the size of each replicated design for the Sobol' indices computations via the sobolrep() fct. |
rank |
logical. If |
nboot |
the number of bootstrap replicates. |
conf |
the confidence level of the bootstrap confidence intervals. |
x |
the object returned by |
data |
the object returned by |
ylim |
the y-coordinate limits of the plot. |
mapping |
Default list of aesthetic mappings to use for plot. If not specified, must be supplied in each layer added to the plot. |
environment |
[Deprecated] Used prior to tidy evaluation. |
... |
arguments to be passed to methods, such as graphical
parameters (see |
Details
No
Value
johnsonshap
returns a list of class "johnsonshap"
, containing the following
components:
call |
the matched call. |
johshap |
a data frame containing the estimations of the Johnson-Shapley indices, bias and confidence intervals. |
Author(s)
Bertrand Iooss
References
B. Iooss and L. Clouvel, Une methode d'approximation des effets de Shapley en grande dimension, 54emes Journees de Statistique, Bruxelles, Belgique, July 3-7, 2023
See Also
Examples
#####################################################
# Test case: the non-monotonic Sobol g-function
n <- 1000
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- johnsonshap(model = sobol.fun, X = X, N = n)
print(x)
plot(x)
library(ggplot2) ; ggplot(x)