| tree_continuous {sensiPhy} | R Documentation |
Phylogenetic uncertainty - Trait Evolution Continuous Characters
Description
Fits models for trait evolution of continuous characters, evaluating phylogenetic uncertainty.
Usage
tree_continuous(
data,
phy,
n.tree = 10,
model,
bounds = list(),
n.cores = NULL,
track = TRUE,
...
)
Arguments
data |
Data vector for a single continuous trait, with names matching tips in |
phy |
Phylogenies (class 'multiPhylo', see ? |
n.tree |
Number of times to repeat the analysis with n different trees picked
randomly in the multiPhylo file. If NULL, |
model |
The evolutionary model (see Details). |
bounds |
settings to constrain parameter estimates. See |
n.cores |
number of cores to use. If 'NULL', number of cores is detected. |
track |
Print a report tracking function progress (default = TRUE) |
... |
Further arguments to be passed to |
Details
This function fits different models of continuous character evolution using fitContinuous
to n trees, randomly picked in a multiPhylo file.
Different evolutionary models from fitContinuous can be used, i.e. BM,OU,
EB, trend, lambda, kappa, delta and drift.
See fitContinuous for more details on character models and tree transformations.
Output can be visualised using sensi_plot.
Value
The function tree_continuous returns a list with the following
components:
call: The function call
data: The original full data vector
sensi.estimates: (rate of evolution sigsq,
root state z0 and where applicable optpar),
AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda)
for each analysis with a different phylogenetic tree.
N.tree: Number of trees n.tree analysed
stats: Main statistics for model parameters, i.e. minimum, maximum, mean, median and sd-values
optpar: Evolutionary model used (e.g. lambda, kappa etc.)
Author(s)
Gijsbert Werner & Caterina Penone
References
Paterno, G. B., Penone, C. Werner, G. D. A. sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods. Methods in Ecology and Evolution 2018, 9(6):1461-1467
Yang Z. 2006. Computational Molecular Evolution. Oxford University Press: Oxford.
Harmon Luke J, Jason T Weir, Chad D Brock, Richard E Glor, and Wendell Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.
See Also
Examples
## Not run:
#Load data:
data("primates")
#Model trait evolution accounting for phylogenetic uncertainty
adultMass<-primates$data$adultMass
names(adultMass)<-rownames(primates$data)
tree_cont<-tree_continuous(data = adultMass,phy = primates$phy,
model = "OU",n.tree=30,n.cores = 2,track = TRUE)
#Print summary statistics
summary(tree_cont)
sensi_plot(tree_cont)
sensi_plot(tree_cont,graphs="sigsq")
sensi_plot(tree_cont,graphs="optpar")
#Use a different evolutionary model
tree_cont2<-tree_continuous(data = adultMass,phy = primates$phy,
model = "delta",n.tree=30,n.cores = 2,track = TRUE)
summary(tree_cont2)
sensi_plot(tree_cont2)
## End(Not run)