samp_continuous {sensiPhy} | R Documentation |
Species Sampling uncertainty - Trait Evolution Continuous Characters
Description
Fits models for trait evolution of continuous characters, evaluating sampling uncertainty.
Usage
samp_continuous(
data,
phy,
n.sim = 30,
breaks = seq(0.1, 0.5, 0.1),
model,
n.cores = NULL,
bounds = list(),
track = TRUE,
...
)
Arguments
data |
Data vector for a single binary trait, with names matching tips in |
phy |
A phylogeny (class 'phylo') matching |
n.sim |
The number of times species are randomly deleted for each |
breaks |
A vector containing the percentages of species to remove. |
model |
The evolutionary model (see Details). |
n.cores |
number of cores to use. If 'NULL', number of cores is detected. |
bounds |
settings to constrain parameter estimates. See |
track |
Print a report tracking function progress (default = TRUE) |
... |
Further arguments to be passed to |
Details
This function randomly removes a given percentage of species (controlled by breaks
),
fits different models of continuous character evolution using fitContinuous
,
repeats this this many times (controlled by n.sim
), stores the results and calculates
the effects on model parameters.
Different evolutionary models from fitContinuous
can be used, i.e. BM
,OU
,
EB
, trend
, lambda
, kappa
, delta
and drift
.
See fitContinuous
for more details on character models and tree transformations.
Output can be visualised using sensi_plot
.
Value
The function tree_continuous
returns a list with the following
components:
call
: The function call
data
: The original full data vector
optpar
: Transformation parameter used (e.g. lambda
, kappa
etc.)
full.model.estimates
: Parameter estimates (rate of evolution sigsq
and where applicable optpar
), root state z0
,
AICc for the full model without deleted species.
break.summary.tab
: Summary per break
of the mean and median effects
of species removal on percentage and absolute change parameter estimates.
sensi.estimates
: Parameter estimates (sigsq and optpar),(percentual) difference
in parameter estimate compared to the full model (DIFsigsq, sigsq.perc,sDIFsigsq,
DIFoptpar, optpar.perc,sDIFoptpar),
AICc and z0 for each repeat with random species removed.
optpar
: Transformation parameter used (e.g. lambda
, kappa
etc.)
Author(s)
Gijsbert Werner & Gustavo Paterno
References
Paterno, G. B., Penone, C. Werner, G. D. A. sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods. Methods in Ecology and Evolution 2018, 9(6):1461-1467
Yang Z. 2006. Computational Molecular Evolution. Oxford University Press: Oxford.
Harmon Luke J, Jason T Weir, Chad D Brock, Richard E Glor, and Wendell Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.
Werner, G.D.A., Cornwell, W.K., Sprent, J.I., Kattge, J. & Kiers, E.T. (2014). A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communications, 5, 4087.
See Also
Examples
## Not run:
#Load data:
data("primates")
#Model trait evolution accounting for sampling size
adultMass<-primates$data$adultMass
names(adultMass)<-rownames(primates$data)
samp_cont<-samp_continuous(data = adultMass,phy = primates$phy[[1]],
model = "OU",n.sim=25,breaks=seq(.05,.2,.05),n.cores = 2, track = TRUE)
#Print summary statistics
summary(samp_cont)
sensi_plot(samp_cont)
sensi_plot(samp_cont, graphs = 1)
#Use a different evolutionary model
samp_cont2<-samp_continuous(data = adultMass,phy = primates$phy[[1]],
model = "kappa",n.sim=25,breaks=seq(.05,.2,.05),n.cores = 2,track = TRUE)
summary(samp_cont2)
sensi_plot(samp_cont2)
sensi_plot(samp_cont2, graphs = 2)
samp_cont3<-samp_continuous(data = adultMass,phy = primates$phy[[1]],
model = "BM",n.sim=25,breaks=seq(.05,.2,.05),n.cores = 2,track = TRUE)
summary(samp_cont3)
## End(Not run)