intra_phyglm {sensiPhy} | R Documentation |
Intraspecific variability - Phylogenetic Logistic Regression
Description
Performs Phylogenetic logistic regression evaluating intraspecific variability in predictor variables.
Usage
intra_phyglm(
formula,
data,
phy,
Vx = NULL,
n.intra = 30,
x.transf = NULL,
distrib = "normal",
btol = 50,
track = TRUE,
...
)
Arguments
formula |
The model formula: |
data |
Data frame containing species traits with species as row names. |
phy |
A phylogeny (class 'phylo', see ? |
Vx |
Name of the column containing the standard deviation or the standard error of the predictor
variable. When information is not available for one taxon, the value can be 0 or |
n.intra |
Number of times to repeat the analysis generating a random value for the predictor variable.
If NULL, |
x.transf |
Transformation for the predictor variable (e.g. |
distrib |
A character string indicating which distribution to use to generate a random value for the
predictor variable. Default is normal distribution: "normal" (function |
btol |
Bound on searching space. For details see |
track |
Print a report tracking function progress (default = TRUE) |
... |
Further arguments to be passed to |
Details
This function fits a phylogenetic logistic regression model using phyloglm
.
The regression is repeated n.intra
times. At each iteration the function generates a random value
for each row in the dataset using the standard deviation or error supplied and assuming a normal or uniform distribution.
To calculate means and se for your raw data, you can use the summarySE
function from the
package Rmisc
.
All phylogenetic models from phyloglm
can be used, i.e. BM
,
OUfixedRoot
, OUrandomRoot
, lambda
, kappa
,
delta
, EB
and trend
. See ?phyloglm
for details.
Currently, this function can only implement simple logistic models (i.e. trait~
predictor
). In the future we will implement more complex models.
Output can be visualised using sensi_plot
.
Value
The function intra_phyglm
returns a list with the following
components:
formula
: The formula
data
: Original full dataset
sensi.estimates
: Coefficients, aic and the optimised
value of the phylogenetic parameter (e.g. lambda
) for each regression.
N.obs
: Size of the dataset after matching it with tree tips and removing NA's.
stats
: Main statistics for model parameters.CI_low
and CI_high
are the lower
and upper limits of the 95
all.stats
: Complete statistics for model parameters. sd_intra
is the standard deviation
due to intraspecific variation. CI_low
and CI_high
are the lower and upper limits
of the 95
sp.pb
: Species that caused problems with data transformation (see details above).
Warning
When Vx exceeds X negative (or null) values can be generated, this might cause problems
for data transformation (e.g. log-transformation). In these cases, the function will skip the simulation. This problem can
be solved by increasing n.intra
, changing the transformation type and/or checking the target species in output$sp.pb.
Author(s)
Caterina Penone & Pablo Ariel Martinez
References
Paterno, G. B., Penone, C. Werner, G. D. A. sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods. Methods in Ecology and Evolution 2018, 9(6):1461-1467
Martinez, P. a., Zurano, J.P., Amado, T.F., Penone, C., Betancur-R, R., Bidau, C.J. & Jacobina, U.P. (2015). Chromosomal diversity in tropical reef fishes is related to body size and depth range. Molecular Phylogenetics and Evolution, 93, 1-4
Ho, L. S. T. and Ane, C. 2014. "A linear-time algorithm for Gaussian and non-Gaussian trait evolution models". Systematic Biology 63(3):397-408.
See Also
Examples
# Simulate Data:
set.seed(6987)
phy = rtree(150)
x = rTrait(n=1,phy=phy)
x_sd = rnorm(150,mean = 0.8,sd=0.2)
X = cbind(rep(1,150),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7 ,X=X)
dat = data.frame(y, x, x_sd)
# Run phylogenetic logistic regression accounting for intraspecific variation:
intra_glm <- intra_phyglm(y~x,Vx = "x_sd",data = dat,phy=phy,distrib = "normal")
#Print summary of sensitivity analysis
summary(intra_glm)
head(intra_glm$sensi.estimates)
#Visual output
sensi_plot(intra_glm)