influ_continuous {sensiPhy} | R Documentation |
Influential Species Detection - Trait Evolution Continuous Characters
Description
Fits models for trait evolution of continuous characters, detecting influential species.
Usage
influ_continuous(
data,
phy,
model,
bounds = list(),
cutoff = 2,
n.cores = NULL,
track = TRUE,
...
)
Arguments
data |
Data vector for a single continuous trait, with names matching tips in |
phy |
A phylogeny (class 'phylo') matching |
model |
The evolutionary model (see Details). |
bounds |
settings to constrain parameter estimates. See |
cutoff |
The cut-off parameter for influential species (see Details). |
n.cores |
number of cores to use. If 'NULL', number of cores is detected. |
track |
Print a report tracking function progress (default = TRUE) |
... |
Further arguments to be passed to |
Details
This function sequentially removes one species at a time,
fits different models of continuous character evolution using fitContinuous
,
stores the results and calculates the effects on model parameters.
influ_continuous
detects influential species based on the standardised
difference in the rate parameter sigsq
and the optimisation parameter optpar
(e.g. lamda, kappa, alpha, depending on which model
is set), when removing
a given species compared to the full model including all species.
Species with a standardised difference above the value of
cutoff
are identified as influential.
Different evolutionary models from fitContinuous
can be used, i.e. BM
,OU
,
EB
, trend
, lambda
, kappa
, delta
and drift
.
See fitContinuous
for more details on evolutionary models.
Value
The function tree_discrete
returns a list with the following
components:
call
: The function call
cutoff
: The value selected for cutoff
data
: The original full data vector
optpar
: Transformation parameter used (e.g. lambda
, kappa
etc.)
full.model.estimates
: Parameter estimates (rate of evolution sigsq
and where applicable optpar
), root state z0
,
AICc for the full model without deleted species.
influential_species
: List of influential species, based on standardised
difference in estimates for sigsq and optpar. Species are ordered from most influential to
less influential and only include species with a standardised difference > cutoff
.
sensi.estimates
: Parameter estimates (sigsq and optpar),(percentual) difference
in parameter estimate compared to the full model (DIFsigsq, sigsq.perc,sDIFsigsq,
DIFoptpar, optpar.perc,sDIFoptpar),
AICc and z0 for each repeat with a species removed.
Author(s)
Gijsbert Werner & Gustavo Paterno
References
Paterno, G. B., Penone, C. Werner, G. D. A. sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods. Methods in Ecology and Evolution 2018, 9(6):1461-1467.
Yang Z. 2006. Computational Molecular Evolution. Oxford University Press: Oxford.
Harmon Luke J, Jason T Weir, Chad D Brock, Richard E Glor, and Wendell Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.
See Also
Examples
## Not run:
#Load data:
data("primates")
#Model trait evolution accounting for influential species
adultMass<-primates$data$adultMass
names(adultMass)<-rownames(primates$data)
influ_cont<-influ_continuous(data = adultMass,phy = primates$phy[[1]],
model = "OU",cutoff = 2,n.cores = 2,track = TRUE)
#Print summary statistics
summary(influ_cont)
sensi_plot(influ_cont)
sensi_plot(influ_cont,graphs="sigsq")
#' sensi_plot(influ_cont,graphs="optpar")
#Use a different evolutionary model or cutoff
influ_cont2<-influ_continuous(data = adultMass,phy = primates$phy[[1]],
model = "lambda",cutoff = 1.2,n.cores = 2,track = TRUE)
summary(influ_cont2)
sensi_plot(influ_cont2)
influ_cont3<-influ_continuous(data = adultMass,phy = primates$phy[[1]],
model = "BM",cutoff = 2,n.cores = 2,track = TRUE)
summary(influ_cont3)
## End(Not run)