MCGeneric {semmcci} | R Documentation |
Monte Carlo Confidence Intervals (Generic)
Description
Calculates Monte Carlo confidence intervals
for defined parameters
for any fitted model object with coef
and vcov
methods.
Usage
MCGeneric(
object,
def,
R = 20000L,
alpha = c(0.001, 0.01, 0.05),
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
seed = NULL
)
Arguments
object |
R object.
Fitted model object with |
def |
List of character strings. A list of defined functions of parameters. The string should be a valid R expression when parsed and should result a single value when evaluated. |
R |
Positive integer. Number of Monte Carlo replications. |
alpha |
Numeric vector.
Significance level |
decomposition |
Character string.
Matrix decomposition of the sampling variance-covariance matrix
for the data generation.
If |
pd |
Logical.
If |
tol |
Numeric.
Tolerance used for |
seed |
Integer. Random seed for reproducibility. |
Details
A sampling distribution of parameter estimates is generated
from the multivariate normal distribution
using the parameter estimates and the sampling variance-covariance matrix.
Confidence intervals for defined parameters
are generated using the simulated sampling distribution.
Parameters are defined using the def
argument.
Value
Returns an object of class semmcci
which is
a list with the following elements:
- call
Function call.
- args
List of function arguments.
- thetahat
Parameter estimates
\hat{\theta}
.- thetahatstar
Sampling distribution of parameter estimates
\hat{\theta}^{\ast}
.- fun
Function used ("MCGeneric").
Author(s)
Ivan Jacob Agaloos Pesigan
References
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99-128. doi:10.1207/s15327906mbr3901_4
Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods. doi:10.3758/s13428-023-02114-4
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. doi:10.1080/19312458.2012.679848
See Also
Other Monte Carlo in Structural Equation Modeling Functions:
Func()
,
MC()
,
MCFunc()
,
MCMI()
,
MCStd()
Examples
library(semmcci)
library(lavaan)
# Data ---------------------------------------------------------------------
data("Tal.Or", package = "psych")
df <- mice::ampute(Tal.Or)$amp
# Monte Carlo --------------------------------------------------------------
## Fit Model in lavaan -----------------------------------------------------
model <- "
reaction ~ cp * cond + b * pmi
pmi ~ a * cond
cond ~~ cond
"
fit <- sem(data = df, model = model, missing = "fiml")
## MCGeneric() -------------------------------------------------------------
MCGeneric(
fit,
R = 5L, # use a large value e.g., 20000L for actual research
alpha = 0.05,
def = list(
"a * b",
"cp + (a * b)"
)
)