scMANOVAestimation {semicontMANOVA} | R Documentation |
Multivariate ANalysis Of VAriance Maximum Likelihood Estimation with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVAestimation
computes the regularized Multivariate ANalysis Of
VAriance (MANOVA) maximum likelihood estimates for semicontinuous
high-dimensional data. The estimation can be performed also for
low-dimensional data. The regularization parameters are provided as input
and the user can decide to perform the regularization adding the identity
matrix to the raw estimated covariance matrix (default, ident=TRUE
)
or adding the diagonal values of the raw estimated covariance matrix
(ident=FALSE
).
Usage
scMANOVAestimation(x, n, lambda = NULL, lambda0 = NULL,
ident = TRUE, posdef.check = TRUE, rm.vars = NA)
Arguments
x |
|
n |
|
lambda |
scalar. Ridge regularization parameter |
lambda0 |
scalar. Ridge regularization parameter under null hypothesis |
ident |
|
posdef.check |
|
rm.vars |
|
Value
An object of class
scMANOVAestimation which is a list with the following components
pi |
|
mu |
|
sigmaRidge |
|
sigma |
|
pi0 |
|
mu0 |
|
sigma0Ridge |
|
sigma0 |
|
removed.vars |
|
logLikPi |
scalar. Log-likelihood for the discrete part of the model |
logLik |
scalar. Log-likelihood |
logLikPi0 |
scalar. Log-likelihood for the discrete part of the model under the null hypothesis |
logLik0 |
scalar. Log-likelihood under null hypothesis |
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2024) A regularized MANOVA test for semicontinuous high-dimensional data. arXiv: http://arxiv.org/abs/2401.04036
See Also
Examples
set.seed(1234)
n <- c(5,5)
p <- 20
pmiss <- 0.1
x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
res <- scMANOVAestimation(x=x, n=n, lambda=3.59, lambda0=3.13)
res