scMANOVA {semicontMANOVA} | R Documentation |
Multivariate ANalysis Of VAriance Inference and Test with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVA
performs Multivariate ANalysis Of VAriance (MANOVA) inference and test with ridge regularization in presence of
semicontinuous high-dimensional data. The test is based on a Likelihood Ratio Test statistic
and the p-value can be computed using either asymptotic distribution (p.value.perm = FALSE
)
or via permutation procedure (p.value.perm = TRUE
). There is the possibility to provide
as input the regularization parameters or to choose them through an optimization procedure.
Usage
scMANOVA(x, n, lambda = NULL, lambda0 = NULL, lambda.step = 0.1,
ident = FALSE, tol = 1e-08, penalty = function(n, p) log(n),
B = 500, p.value.perm = FALSE, fixed.lambda = FALSE, ...)
Arguments
x |
|
n |
|
lambda |
|
lambda0 |
|
lambda.step |
scalar. Step size used in the optimization procedure to find the smallest value of |
ident |
|
tol |
scalar. Used in the optimization procedure to find the smallest value of |
penalty |
|
B |
scalar. Number of permutations to run in the permutation test |
p.value.perm |
|
fixed.lambda |
|
... |
further parameters passed to function |
Value
An object of class
scMANOVA which is a list with the following components
pi |
|
mu |
|
sigmaRidge |
|
sigma |
|
pi0 |
|
mu0 |
|
sigma0Ridge |
|
sigma0 |
|
removed.vars |
|
logLikPi |
scalar. Log-likelihood for the discrete part of the model |
logLik |
scalar. Log-likelihood |
logLikPi0 |
scalar. Log-likelihood for the discrete part of the model under the null hypothesis |
logLik0 |
scalar. Log-likelihood under null hypothesis |
statistic |
scalar. Wilks statistics |
lambda |
scalar. Regularization parameter |
lambda0 |
scalar. Regularization parameter under null hypothesis |
df |
scalar. Model degree of freedom |
df0 |
scalar. Model degree of freedom under null hypothesis |
aic |
scalar. Information criteria |
aic0 |
scalar. Information criteria under null hypothesis |
p.value |
scalar. p-value of the Wilks statistic |
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2024) A regularized MANOVA test for semicontinuous high-dimensional data. arXiv: http://arxiv.org/abs/2401.04036
See Also
scMANOVAestimation
and scMANOVApermTest
Examples
set.seed(1234)
n <- c(5,5)
p <- 20
pmiss <- 0.1
x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
res.asy <- scMANOVA(x=x, n=n) # Asymptotic p.value
res.asy
res.perm <- scMANOVA(x=x, n=n, p.value.perm=TRUE) # p-value by permutation test
res.perm