mahalanobis_predictors {semfindr} | R Documentation |
Mahalanobis Distance On Observed Predictors
Description
Gets a lavaan_rerun()
or lavaan::lavaan()
output
and computes the Mahalanobis distance for each case using only the
observed predictors.
Usage
mahalanobis_predictors(
fit,
emNorm_arg = list(estimate.worst = FALSE, criterion = 1e-06)
)
Arguments
fit |
It can be the output from |
emNorm_arg |
No longer used. Kept for backward compatibility. |
Details
For each case, mahalanobis_predictors()
computes the
Mahalanobis distance of each case on the observed predictors.
If there are no missing values, stats::mahalanobis()
will be used
to compute the Mahalanobis distance.
If there are missing values on the observed predictors, the means
and variance-covariance matrices will be estimated by maximum
likelihood using lavaan::lavCor()
. The estimates will be passed
to modi::MDmiss()
to compute the Mahalanobis distance.
Supports both single-group and multiple-group models. For multiple-group models, the Mahalanobis distance for each case is computed using the means and covariance matrix of the group this case belongs to. (Support for multiple-group models available in 0.1.4.8 and later version).
Value
A md_semfindr
-class object, which is
a one-column matrix (a column vector) of the Mahalanobis
distance for each case. The number of rows equals to the number of
cases in the data stored in the fit object.
A print method is available for user-friendly output.
Author(s)
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448.
References
Béguin, C., & Hulliger, B. (2004). Multivariate outlier detection in incomplete survey data: The epidemic algorithm and transformed rank correlations. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(2), 275-294.
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 2, 49-55.
Schafer, J.L. (1997) Analysis of incomplete multivariate data. Chapman & Hall/CRC Press.
Examples
library(lavaan)
dat <- pa_dat
# For illustration, select only the first 50 cases.
dat <- dat[1:50, ]
# The model
mod <-
"
m1 ~ a1 * iv1 + a2 * iv2
dv ~ b * m1
a1b := a1 * b
a2b := a2 * b
"
# Fit the model
fit <- lavaan::sem(mod, dat)
summary(fit)
md_predictors <- mahalanobis_predictors(fit)
md_predictors