runMI {semTools} | R Documentation |
Fit a lavaan Model to Multiple Imputed Data Sets
Description
This function fits a lavaan model to a list of imputed data sets, and can
also implement multiple imputation for a single data.frame
with
missing observations, using either the Amelia package or the mice package.
Usage
runMI(model, data, fun = "lavaan", ..., m, miArgs = list(),
miPackage = "Amelia", seed = 12345)
lavaan.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)
cfa.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)
sem.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)
growth.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)
Arguments
model |
The analysis model can be specified using lavaan
|
data |
A |
fun |
|
... |
additional arguments to pass to |
m |
|
miArgs |
Addition arguments for the multiple-imputation function
( |
miPackage |
Package to be used for imputation. Currently these
functions only support |
seed |
|
Value
A lavaan.mi
object
Author(s)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
References
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
Examples
## Not run:
## impose missing data for example
HSMiss <- HolzingerSwineford1939[ , c(paste("x", 1:9, sep = ""),
"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
## specify CFA model from lavaan's ?cfa help page
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
## impute data within runMI...
out1 <- cfa.mi(HS.model, data = HSMiss, m = 20, seed = 12345,
miArgs = list(noms = "school"))
## ... or impute missing data first
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations
out2 <- cfa.mi(HS.model, data = imps)
## same results (using the same seed results in the same imputations)
cbind(impute.within = coef(out1), impute.first = coef(out2))
summary(out1, fit.measures = TRUE)
summary(out1, ci = FALSE, fmi = TRUE, output = "data.frame")
summary(out1, ci = FALSE, stand = TRUE, rsq = TRUE)
## model fit. D3 includes information criteria
anova(out1)
## equivalently:
lavTestLRT.mi(out1)
## request D2
anova(out1, test = "D2")
## request fit indices
fitMeasures(out1)
## fit multigroup model without invariance constraints
mgfit.config <- cfa.mi(HS.model, data = imps, estimator = "mlm",
group = "school")
## add invariance constraints, and use previous fit as "data"
mgfit.metric <- cfa.mi(HS.model, data = mgfit.config, estimator = "mlm",
group = "school", group.equal = "loadings")
mgfit.scalar <- cfa.mi(HS.model, data = mgfit.config, estimator = "mlm",
group = "school",
group.equal = c("loadings","intercepts"))
## compare fit of 2 models to test metric invariance
## (scaled likelihood ratio test)
lavTestLRT.mi(mgfit.metric, h1 = mgfit.config)
## To compare multiple models, you must use anova()
anova(mgfit.config, mgfit.metric, mgfit.scalar)
## or compareFit(), which also includes fit indices for comparison
## (optional: name the models)
compareFit(config = mgfit.config, metric = mgfit.metric,
scalar = mgfit.scalar,
argsLRT = list(test = "D2", method = "satorra.bentler.2010"))
## correlation residuals to investigate local misfit
resid(mgfit.scalar, type = "cor.bentler")
## modification indices for fixed parameters, to investigate local misfit
modindices.mi(mgfit.scalar)
## or lavTestScore.mi for modification indices about equality constraints
lavTestScore.mi(mgfit.scalar)
## Wald test of whether latent means are == (fix 3 means to zero in group 2)
eq.means <- ' .p70. == 0
.p71. == 0
.p72. == 0 '
lavTestWald.mi(mgfit.scalar, constraints = eq.means)
## ordered-categorical data
data(datCat)
lapply(datCat, class) # indicators already stored as ordinal
## impose missing values
set.seed(123)
for (i in 1:8) datCat[sample(1:nrow(datCat), size = .1*nrow(datCat)), i] <- NA
## impute ordinal missing data using mice package
library(mice)
set.seed(456)
miceImps <- mice(datCat)
## save imputations in a list of data.frames
impList <- list()
for (i in 1:miceImps$m) impList[[i]] <- complete(miceImps, action = i)
## fit model, save zero-cell tables and obsolete "WRMR" fit indices
catout <- cfa.mi(' f =~ 1*u1 + 1*u2 + 1*u3 + 1*u4 ', data = impList,
FUN = function(fit) {
list(wrmr = lavaan::fitMeasures(fit, "wrmr"),
zeroCells = lavaan::lavInspect(fit, "zero.cell.tables"))
})
summary(catout)
lavTestLRT.mi(catout, test = "D2", pool.robust = TRUE)
fitMeasures(catout, fit.measures = c("rmsea","srmr","cfi"),
test = "D2", pool.robust = TRUE)
## extract custom output
sapply(catout@funList, function(x) x$wrmr) # WRMR for each imputation
catout@funList[[1]]$zeroCells # zero-cell tables for first imputation
catout@funList[[2]]$zeroCells # zero-cell tables for second imputation ...
## End(Not run)