modindices.mi {semTools} | R Documentation |
Modification Indices for Multiple Imputations
Description
Modification indices (1-df Lagrange multiplier tests) from a latent variable model fitted to multiple imputed data sets. Statistics for releasing one or more fixed or constrained parameters in model can be calculated by pooling the gradient and information matrices across imputed data sets in a method proposed by Mansolf, Jorgensen, & Enders (2020)—analogous to the "D1" Wald test proposed by Li, Meng, Raghunathan, & Rubin (1991)—or by pooling the complete-data score-test statistics across imputed data sets (i.e., "D2"; Li et al., 1991).
Usage
modindices.mi(object, test = c("D2", "D1"), omit.imps = c("no.conv",
"no.se"), standardized = TRUE, cov.std = TRUE,
information = "expected", power = FALSE, delta = 0.1, alpha = 0.05,
high.power = 0.75, sort. = FALSE, minimum.value = 0,
maximum.number = nrow(LIST), na.remove = TRUE, op = NULL)
modificationIndices.mi(object, test = c("D2", "D1"),
omit.imps = c("no.conv", "no.se"), standardized = TRUE, cov.std = TRUE,
information = "expected", power = FALSE, delta = 0.1, alpha = 0.05,
high.power = 0.75, sort. = FALSE, minimum.value = 0,
maximum.number = nrow(LIST), na.remove = TRUE, op = NULL)
Arguments
object |
An object of class |
test |
|
omit.imps |
|
standardized |
|
cov.std |
|
information |
|
power |
|
delta |
The value of the effect size, as used in the post-hoc power
computation, currently using the unstandardized metric of the |
alpha |
The significance level used for deciding if the modification index is statistically significant or not. |
high.power |
If the computed power is higher than this cutoff value,
the power is considered 'high'. If not, the power is considered 'low'.
This affects the values in the |
sort. |
|
minimum.value |
|
maximum.number |
|
na.remove |
|
op |
|
Value
A data.frame
containing modification indices and (S)EPCs.
Note
When test = "D2"
, each (S)EPC will be pooled by taking its
average across imputations. When test = "D1"
, EPCs will be
calculated in the standard way using the pooled gradient and information,
and SEPCs will be calculated by standardizing the EPCs using model-implied
(residual) variances.
Author(s)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Adapted from lavaan source code, written by Yves Rosseel (Ghent University; Yves.Rosseel@UGent.be)
test = "D1"
method proposed by
Maxwell Mansolf (University of California, Los Angeles;
mamansolf@gmail.com)
References
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from repeated p-values with multiply-imputed data.Statistica Sinica, 1(1), 65–92. Retrieved from https://www.jstor.org/stable/24303994
Mansolf, M., Jorgensen, T. D., & Enders, C. K. (2020). A multiple imputation score test for model modification in structural equation models. Psychological Methods, 25(4), 393–411. doi:10.1037/met0000243
Examples
## Not run:
## impose missing data for example
HSMiss <- HolzingerSwineford1939[ , c(paste("x", 1:9, sep = ""),
"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
## impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations
## specify CFA model from lavaan's ?cfa help page
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
out <- cfa.mi(HS.model, data = imps)
modindices.mi(out) # default: Li et al.'s (1991) "D2" method
modindices.mi(out, test = "D1") # Li et al.'s (1991) "D1" method
## End(Not run)