mardiaSkew {semTools} | R Documentation |
Finding Mardia's multivariate skewness
Description
Finding Mardia's multivariate skewness of multiple variables
Usage
mardiaSkew(dat, use = "everything")
Arguments
dat |
The target matrix or data frame with multiple variables |
use |
Missing data handling method from the |
Details
The Mardia's multivariate skewness formula (Mardia, 1970) is
b_{1, d} = \frac{1}{n^2}\sum^n_{i=1}\sum^n_{j=1}\left[
\left(\bold{X}_i - \bold{\bar{X}} \right)^{'} \bold{S}^{-1}
\left(\bold{X}_j - \bold{\bar{X}} \right) \right]^3,
where d
is the number of variables, X
is the target dataset
with multiple variables, n
is the sample size, \bold{S}
is
the sample covariance matrix of the target dataset, and \bold{\bar{X}}
is the mean vectors of the target dataset binded in n
rows.
When the population multivariate skewness is normal, the
\frac{n}{6}b_{1,d}
is asymptotically distributed as \chi^2
distribution with d(d + 1)(d + 2)/6
degrees of freedom.
Value
A value of a Mardia's multivariate skewness with a test statistic
Author(s)
Sunthud Pornprasertmanit (psunthud@gmail.com)
References
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. doi:10.2307/2334770
See Also
-
skew
Find the univariate skewness of a variable -
kurtosis
Find the univariate excessive kurtosis of a variable -
mardiaKurtosis
Find the Mardia's multivariate kurtosis of a set of variables
Examples
library(lavaan)
mardiaSkew(HolzingerSwineford1939[ , paste0("x", 1:9)])