| lrv2ord {semTools} | R Documentation |
Calculate Population Moments for Ordinal Data Treated as Numeric
Description
This function calculates ordinal-scale moments implied by LRV-scale moments
Usage
lrv2ord(Sigma, Mu, thresholds, cWts)
Arguments
Sigma |
Population covariance |
Mu |
Optional |
thresholds |
Either a single |
cWts |
Optional (default when missing is to use 0 for the lowest
category, followed by successive integers for each higher category).
Either a single |
Details
Binary and ordinal data are frequently accommodated in SEM by incorporating a threshold model that links each observed categorical response variable to a corresponding latent response variable that is typically assumed to be normally distributed (Kamata & Bauer, 2008; Wirth & Edwards, 2007).
Value
A list including the LRV-scale population moments (means,
covariance matrix, correlation matrix, and thresholds), the category
weights, a data.frame of implied univariate moments (means,
SDs, skewness, and excess kurtosis (i.e., in excess of 3, which is
the kurtosis of the normal distribution) for discretized data treated as
numeric, and the implied covariance and correlation matrix of
discretized data treated as numeric.
Author(s)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Andrew Johnson (Curtin University; andrew.johnson@curtin.edu.au)
References
Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory models. Structural Equation Modeling, 15(1), 136–153. doi:10.1080/10705510701758406
Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12(1), 58–79. doi:10.1037/1082-989X.12.1.58
Examples
## SCENARIO 1: DIRECTLY SPECIFY POPULATION PARAMETERS
## specify population model in LISREL matrices
Nu <- rep(0, 4)
Alpha <- c(1, -0.5)
Lambda <- matrix(c(1, 1, 0, 0, 0, 0, 1, 1), nrow = 4, ncol = 2,
dimnames = list(paste0("y", 1:4), paste0("eta", 1:2)))
Psi <- diag(c(1, .75))
Theta <- diag(4)
Beta <- matrix(c(0, .5, 0, 0), nrow = 2, ncol = 2)
## calculate model-implied population means and covariance matrix
## of latent response variables (LRVs)
IB <- solve(diag(2) - Beta) # to save time and space
Mu_LRV <- Nu + Lambda %*% IB %*% Alpha
Sigma_LRV <- Lambda %*% IB %*% Psi %*% t(IB) %*% t(Lambda) + Theta
## Specify (unstandardized) thresholds to discretize normally distributed data
## generated from Mu_LRV and Sigma_LRV, based on marginal probabilities
PiList <- list(y1 = c(.25, .5, .25),
y2 = c(.17, .33, .33, .17),
y3 = c(.1, .2, .4, .2, .1),
## make final variable highly asymmetric
y4 = c(.33, .25, .17, .12, .08, .05))
sapply(PiList, sum) # all sum to 100%
CumProbs <- sapply(PiList, cumsum)
## unstandardized thresholds
TauList <- mapply(qnorm, p = lapply(CumProbs, function(x) x[-length(x)]),
m = Mu_LRV, sd = sqrt(diag(Sigma_LRV)))
for (i in 1:4) names(TauList[[i]]) <- paste0(names(TauList)[i], "|t",
1:length(TauList[[i]]))
## assign numeric weights to each category (optional, see default)
NumCodes <- list(y1 = c(-0.5, 0, 0.5), y2 = 0:3, y3 = 1:5, y4 = 1:6)
## Calculate Population Moments for Numerically Coded Ordinal Variables
lrv2ord(Sigma = Sigma_LRV, Mu = Mu_LRV, thresholds = TauList, cWts = NumCodes)
## SCENARIO 2: USE ESTIMATED PARAMETERS AS POPULATION
data(datCat) # already stored as c("ordered","factor")
fit <- cfa(' f =~ 1*u1 + 1*u2 + 1*u3 + 1*u4 ', data = datCat)
lrv2ord(Sigma = fit, thresholds = fit) # use same fit for both
## or use estimated thresholds with specified parameters, but note that
## lrv2ord() will only extract standardized thresholds
dimnames(Sigma_LRV) <- list(paste0("u", 1:4), paste0("u", 1:4))
lrv2ord(Sigma = cov2cor(Sigma_LRV), thresholds = fit)