bsBootMiss {semTools} | R Documentation |
Bollen-Stine Bootstrap with the Existence of Missing Data
Description
Implement the Bollen and Stine's (1992) Bootstrap when missing observations
exist. The implemented method is proposed by Savalei and Yuan (2009). This
can be used in two ways. The first and easiest option is to fit the model to
incomplete data in lavaan
using the FIML estimator, then pass that
lavaan
object to bsBootMiss
.
Usage
bsBootMiss(x, transformation = 2, nBoot = 500, model, rawData, Sigma, Mu,
group, ChiSquared, EMcov, writeTransData = FALSE, transDataOnly = FALSE,
writeBootData = FALSE, bootSamplesOnly = FALSE, writeArgs, seed = NULL,
suppressWarn = TRUE, showProgress = TRUE, ...)
Arguments
x |
A target |
transformation |
The transformation methods in Savalei and Yuan (2009).
There are three methods in the article, but only the first two are currently
implemented here. Use |
nBoot |
The number of bootstrap samples. |
model |
Optional. The target model if |
rawData |
Optional. The target raw data set if |
Sigma |
Optional. The model-implied covariance matrix if |
Mu |
Optional. The model-implied mean vector if |
group |
Optional character string specifying the name of the grouping
variable in |
ChiSquared |
Optional. The model's |
EMcov |
Optional, if |
writeTransData |
Logical. If |
transDataOnly |
Logical. If |
writeBootData |
Logical. If |
bootSamplesOnly |
Logical. If |
writeArgs |
Optional |
seed |
The seed number used in randomly drawing bootstrap samples. |
suppressWarn |
Logical. If |
showProgress |
Logical. Indicating whether to display a progress bar while fitting models to bootstrap samples. |
... |
The additional arguments in the |
Details
The second is designed for users of other software packages (e.g., LISREL,
EQS, Amos, or Mplus). Users can import their data, \chi^2
value, and
model-implied moments from another package, and they have the option of
saving (or writing to a file) either the transformed data or bootstrapped
samples of that data, which can be analyzed in other programs. In order to
analyze the bootstrapped samples and return a p value, users of other
programs must still specify their model using lavaan syntax.
Value
As a default, this function returns a BootMiss
object containing the results of the bootstrap samples. Use show
,
summary
, or hist
to examine the results. Optionally, the
transformed data set is returned if transDataOnly = TRUE
. Optionally,
the bootstrap data sets are returned if bootSamplesOnly = TRUE
.
Author(s)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Syntax for transformations borrowed from http://www2.psych.ubc.ca/~vsavalei/
References
Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205–229. doi:10.1177/0049124192021002004
Savalei, V., & Yuan, K.-H. (2009). On the model-based bootstrap with missing data: Obtaining a p-value for a test of exact fit. Multivariate Behavioral Research, 44(6), 741–763. doi:10.1080/00273170903333590
See Also
Examples
## Not run:
dat1 <- HolzingerSwineford1939
dat1$x5 <- ifelse(dat1$x1 <= quantile(dat1$x1, .3), NA, dat1$x5)
dat1$x9 <- ifelse(is.na(dat1$x5), NA, dat1$x9)
targetModel <- "
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
"
targetFit <- sem(targetModel, dat1, meanstructure = TRUE, std.lv = TRUE,
missing = "fiml", group = "school")
summary(targetFit, fit = TRUE, standardized = TRUE)
# The number of bootstrap samples should be much higher.
temp <- bsBootMiss(targetFit, transformation = 1, nBoot = 10, seed = 31415)
temp
summary(temp)
hist(temp)
hist(temp, printLegend = FALSE) # suppress the legend
## user can specify alpha level (default: alpha = 0.05), and the number of
## digits to display (default: nd = 2). Pass other arguments to hist(...),
## or a list of arguments to legend() via "legendArgs"
hist(temp, alpha = .01, nd = 3, xlab = "something else", breaks = 25,
legendArgs = list("bottomleft", box.lty = 2))
## End(Not run)