SSpower {semTools} | R Documentation |
Power for model parameters
Description
Apply Satorra & Saris (1985) method for chi-squared power analysis.
Usage
SSpower(powerModel, n, nparam, popModel, mu, Sigma, fun = "sem",
alpha = 0.05, ...)
Arguments
powerModel |
lavaan |
n |
|
nparam |
|
popModel |
lavaan |
mu |
|
Sigma |
|
fun |
character. Name of |
alpha |
Type I error rate used to set a criterion for rejecting H0. |
... |
additional arguments to pass to |
Details
Specify all non-zero parameters in a population model, either by using
lavaan syntax (popModel
) or by submitting a population covariance
matrix (Sigma
) and optional mean vector (mu
) implied by the
population model. Then specify an analysis model that places at least
one invalid constraint (note the number in the nparam
argument).
There is also a Shiny app called "power4SEM" that provides a graphical user interface for this functionality (Jak et al., in press). It can be accessed at https://sjak.shinyapps.io/power4SEM/.
Author(s)
Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
References
Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50(1), 83–90. doi:10.1007/BF02294150
Jak, S., Jorgensen, T. D., Verdam, M. G., Oort, F. J., & Elffers, L. (2021). Analytical power calculations for structural equation modeling: A tutorial and Shiny app. Behavior Research Methods, 53, 1385–1406. doi:10.3758/s13428-020-01479-0
Examples
## Specify population values. Note every parameter has a fixed value.
modelP <- '
f1 =~ .7*V1 + .7*V2 + .7*V3 + .7*V4
f2 =~ .7*V5 + .7*V6 + .7*V7 + .7*V8
f1 ~~ .3*f2
f1 ~~ 1*f1
f2 ~~ 1*f2
V1 ~~ .51*V1
V2 ~~ .51*V2
V3 ~~ .51*V3
V4 ~~ .51*V4
V5 ~~ .51*V5
V6 ~~ .51*V6
V7 ~~ .51*V7
V8 ~~ .51*V8
'
## Specify analysis model. Note parameter of interest f1~~f2 is fixed to 0.
modelA <- '
f1 =~ V1 + V2 + V3 + V4
f2 =~ V5 + V6 + V7 + V8
f1 ~~ 0*f2
'
## Calculate power
SSpower(powerModel = modelA, popModel = modelP, n = 150, nparam = 1,
std.lv = TRUE)
## Get power for a range of sample sizes
Ns <- seq(100, 500, 40)
Power <- rep(NA, length(Ns))
for(i in 1:length(Ns)) {
Power[i] <- SSpower(powerModel = modelA, popModel = modelP,
n = Ns[i], nparam = 1, std.lv = TRUE)
}
plot(x = Ns, y = Power, type = "l", xlab = "Sample Size")
## Optionally specify different values for multiple populations
modelP2 <- '
f1 =~ .7*V1 + .7*V2 + .7*V3 + .7*V4
f2 =~ .7*V5 + .7*V6 + .7*V7 + .7*V8
f1 ~~ c(-.3, .3)*f2 # DIFFERENT ACROSS GROUPS
f1 ~~ 1*f1
f2 ~~ 1*f2
V1 ~~ .51*V1
V2 ~~ .51*V2
V3 ~~ .51*V3
V4 ~~ .51*V4
V5 ~~ .51*V5
V6 ~~ .51*V6
V7 ~~ .51*V7
V8 ~~ .51*V8
'
modelA2 <- '
f1 =~ V1 + V2 + V3 + V4
f2 =~ V5 + V6 + V7 + V8
f1 ~~ c(psi21, psi21)*f2 # EQUALITY CONSTRAINT ACROSS GROUPS
'
## Calculate power
SSpower(powerModel = modelA2, popModel = modelP2, n = c(100, 100), nparam = 1,
std.lv = TRUE)
## Get power for a range of sample sizes
Ns2 <- cbind(Group1 = seq(10, 100, 10), Group2 = seq(10, 100, 10))
Power2 <- apply(Ns2, MARGIN = 1, FUN = function(nn) {
SSpower(powerModel = modelA2, popModel = modelP2, n = nn,
nparam = 1, std.lv = TRUE)
})
plot(x = rowSums(Ns2), y = Power2, type = "l", xlab = "Total Sample Size",
ylim = 0:1)
abline(h = c(.8, .9), lty = c("dotted","dashed"))
legend("bottomright", c("80% Power","90% Power"), lty = c("dotted","dashed"))