ML.methods {sem} | R Documentation |
Methods for sem Objects Fit Using the objectiveML
, objectiveGLS
, objectiveFIML
, msemObjectiveML
,
and msemObjectiveGLS
Objective Functions
Description
These functions are for objects fit by sem
using the objectiveML
(multivariate-normal full-information maximum-likelihood), link{objectiveFIML}
(multivariate-normal full-information maximum-likihood in
the presence of missing data),
objectiveGLS
(generalized least squares), and msemObjectiveML
(multigroup multivariate-normal FIML) objective functions.
Usage
## S3 method for class 'objectiveML'
anova(object, model.2, robust=FALSE, ...)
## S3 method for class 'objectiveFIML'
anova(object, model.2, ...)
## S3 method for class 'objectiveML'
logLik(object, ...)
## S3 method for class 'objectiveFIML'
logLik(object, saturated=FALSE,
intercept="Intercept", iterlim=1000, ...)
## S3 method for class 'objectiveML'
deviance(object, ...)
## S3 method for class 'objectiveFIML'
deviance(object, saturated.logLik, ...)
## S3 method for class 'msemObjectiveML'
deviance(object, ...)
## S3 method for class 'objectiveML'
AIC(object, ..., k)
## S3 method for class 'objectiveFIML'
AIC(object, saturated.logLik, ..., k)
## S3 method for class 'msemObjectiveML'
AIC(object, ..., k)
## S3 method for class 'objectiveML'
AICc(object, ...)
## S3 method for class 'objectiveFIML'
AICc(object, saturated.logLik, ...)
## S3 method for class 'msemObjectiveML'
AICc(object, ...)
## S3 method for class 'objectiveML'
BIC(object, ...)
## S3 method for class 'objectiveFIML'
BIC(object, saturated.logLik, ...)
## S3 method for class 'msemObjectiveML'
BIC(object, ...)
## S3 method for class 'objectiveML'
CAIC(object, ...)
## S3 method for class 'objectiveFIML'
CAIC(object, saturated.logLik, ...)
## S3 method for class 'objectiveML'
print(x, ...)
## S3 method for class 'objectiveGLS'
print(x, ...)
## S3 method for class 'objectiveFIML'
print(x, saturated=FALSE, ...)
## S3 method for class 'msemObjectiveML'
print(x, ...)
## S3 method for class 'msemObjectiveGLS'
print(x, ...)
## S3 method for class 'objectiveML'
summary(object, digits=getOption("digits"),
conf.level=.90, robust=FALSE, analytic.se=object$t <= 500,
fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI",
"IFI", "SRMR", "AIC", "AICc", "BIC", "CAIC"), ...)
## S3 method for class 'objectiveFIML'
summary(object, digits=getOption("digits"), conf.level=.90,
fit.indices=c("AIC", "AICc", "BIC", "CAIC"),
saturated=FALSE, intercept="Intercept", saturated.logLik, ...)
## S3 method for class 'objectiveGLS'
summary(object, digits=getOption("digits"), conf.level=.90,
fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI", "IFI", "SRMR"),
...)
## S3 method for class 'msemObjectiveML'
summary(object, digits=getOption("digits"),
conf.level=.90, robust=FALSE,
analytic.se=object$t <= 500,
fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI",
"IFI", "SRMR", "AIC", "AICc", "BIC"), ...)
## S3 method for class 'msemObjectiveGLS'
summary(object, digits=getOption("digits"),
conf.level=.90,
fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI",
"CFI", "RNI", "IFI", "SRMR"), ...)
Arguments
object , model.2 , x |
an object inheriting from class |
robust |
if |
fit.indices |
a character vector of “fit indices” to report; the allowable values are those given in Usage
above, and vary by the objective function. If the argument isn't given then the fit indices reported are taken
from the R |
k , ... |
ignored. |
digits |
digits to be printed. |
conf.level |
level for confidence interval for the RMSEA index (default is .9). |
analytic.se |
use analytic (as opposed to numeric) coefficient standard errors; default is |
saturated |
if |
intercept |
the name of the intercept regressor in the raw data, to be used in calculating the
saturated log-likelihood for the FIML estimator; the default is |
saturated.logLik |
the log-likelihood for the saturated model, as returned by |
iterlim |
iteration limit used by the |
Author(s)
John Fox jfox@mcmaster.ca and Jarrett Byrnes
References
See sem
.
See Also
sem
, objective.functions
, modIndices.objectiveML