TG.limits {selectiveInference} | R Documentation |
Truncation limits and standard deviation.
Description
Compute truncated limits and SD for use in computing p-values or confidence intervals of Lee et al. (2016). Z should satisfy A
Usage
TG.limits(Z, A, b, eta, Sigma)
Arguments
Z |
Observed data (assumed to follow N(mu, Sigma) with sum(eta*mu)=null_value) |
A |
Matrix specifiying affine inequalities AZ <= b |
b |
Offsets in the affine inequalities AZ <= b. |
eta |
Determines the target sum(eta*mu) and estimate sum(eta*Z). |
Sigma |
Covariance matrix of Z. Defaults to identity. |
Details
This function computes the limits of truncation and the implied standard deviation in the polyhedral lemma of Lee et al. (2016).
Value
vlo |
Lower truncation limits for statistic |
vup |
Upper truncation limits for statistic |
sd |
Standard error of sum(eta*Z) |
Author(s)
Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
References
Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2016). Exact post-selection inference, with application to the lasso. Annals of Statistics, 44(3), 907-927.
Jonathan Taylor and Robert Tibshirani (2017) Post-selection inference for math L1-penalized likelihood models. Canadian Journal of Statistics, xx, 1-21. (Volume still not posted)
Examples
A = diag(5)
b = rep(1, 5)
Z = rep(0, 5)
Sigma = diag(5)
eta = as.numeric(c(1, 1, 0, 0, 0))
TG.limits(Z, A, b, eta, Sigma)