Pval {selectMeta} | R Documentation |
Functions for the distribution of p-values
Description
The density of the p
-value generated by a test of the hypothesis
H_0 : Y \sim N(0, \sigma^2) \ \ vs. \ \ H_1 : Y \sim N(\theta, \eta^2)
has the form
f(p; \theta, \sigma, \eta) = \frac{\sigma}{2 \eta} \frac{\phi\Bigl((-\sigma \Phi^{-1}(p / 2) - \theta) / \eta\Bigr) + \phi\Bigl((\sigma \Phi^{-1}(p / 2) - \theta) / \eta\Bigr)}{\phi(\Phi^{-1}(p / 2))}
where \eta^2 = u^2 + \sigma^2
. We refer to Rufibach (2011) for details.
Usage
dPval(p, u, theta, sigma2)
pPval(q, u, theta, sigma2)
qPval(prob, u, theta, sigma2)
rPval(n, u, theta, sigma2, seed = 1)
Arguments
p , q |
Quantile. |
prob |
Probability. |
u |
Standard error of the effect size. |
theta |
Effect size. |
sigma2 |
Random effect variance component. |
n |
Number of random numbers to be generated. |
seed |
Seed to set. |
Value
dPval
gives the density, pPval
gives the distribution function, qPval
gives the quantile function, and rPval
generates
random deviates for the density f(p; \theta, \sigma, \eta)
.
Author(s)
Kaspar Rufibach (maintainer), kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
References
Dear, K.B.G. and Begg, C.B. (1992). An Approach for Assessing Publication Bias Prior to Performing a Meta-Analysis. Statist. Sci., 7(2), 237–245.
Rufibach, K. (2011). Selection Models with Monotone Weight Functions in Meta-Analysis. Biom. J., 53(4), 689–704.