DearBeggMonotoneCItheta {selectMeta} | R Documentation |
Compute an approximate profile likelihood ratio confidence interval for effect estimate
Description
Under some assumptions on the true underlying p
-value density the usual likelihood ratio theory for the finite-dimensional
parameter of interest, \theta
, holds although we estimate the infinite-dimensional nuisance parameter w
, see Murphy and van der Vaart (2000).
These functions implement such a confidence interval. To this end we compute the set
\{\theta : \tilde l(\theta, \hat \sigma(\theta), \hat w(\theta)) \ge c\}
where c = - 0.5 \cdot \chi_{1-\alpha}^2(1)
and \tilde l
is the relative profile log-likelihood function.
The functions DearBeggProfileLL
and DearBeggToMinimizeProfile
are not intended to be called by the user directly.
Usage
DearBeggMonotoneCItheta(res, lam = 2, conf.level = 0.95, maxiter = 500)
DearBeggProfileLL(z, res0, lam, conf.level = 0.95, maxiter = 500)
DearBeggToMinimizeProfile(vec, theta, y, u, lam)
Arguments
res |
Output from function |
lam |
Weight of the first entry of |
conf.level |
Confidence level of confidence interval. |
maxiter |
Maximum number of iterations of differential evolution algorithm used in computation of confidence limits. Increase this number to get higher accuracy. |
z |
Variable to maximize over, corresponds to |
res0 |
Output from |
vec |
Vector of parameters over which we maximize. |
theta |
Current |
y |
Normally distributed effect sizes. |
u |
Associated standard errors. |
Value
A list with the element
ci.theta |
that contains the profile likelihood confidence interval for |
Note
Since we have to numerically find zeros of a suitable function, via uniroot
, to get the limits and each iteration involves
computation of w(\theta)
via a variant of DearBeggMonotone
, computation of a confidence interval may take some time (typically seconds
to minutes).
Author(s)
Kaspar Rufibach (maintainer), kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
References
Murphy, S. and van der Vaart, A. (2000). On profile likelihood. J. Amer. Statist. Assoc., 95, 449–485.
Rufibach, K. (2011). Selection Models with Monotone Weight Functions in Meta-Analysis. Biom. J., 53(4), 689–704.
See Also
The estimate under a monotone selection function can be computed using DearBeggMonotone.
Examples
## Not run:
## compute confidence interval for theta in the education dataset
data(education)
N <- education$N
y <- education$theta
u <- sqrt(2 / N)
lam1 <- 2
res.edu <- DearBeggMonotone(y, u, lam = lam1, maxiter = 1000,
CR = 1, trace = FALSE)
r1 <- DearBeggMonotoneCItheta(res.edu, lam = 2, conf.level = 0.95)
res.edu$theta
r1$ci.theta
## compute confidence interval for theta in the passive smoking dataset
data(passive_smoking)
u <- passive_smoking$selnRR
y <- passive_smoking$lnRR
lam1 <- 2
res.toba <- DearBeggMonotone(y, u, lam = lam1, maxiter = 1000,
CR = 1, trace = FALSE)
r2 <- DearBeggMonotoneCItheta(res.toba, lam = 2, conf.level = 0.95)
res.toba$theta
r2$ci.theta
## End(Not run)