get.infectiousness {seismic} | R Documentation |
Estimate the infectiousness of an information cascade
Description
Estimate the infectiousness of an information cascade
Usage
get.infectiousness(
share.time,
degree,
p.time,
max.window = 2 * 60 * 60,
min.window = 300,
min.count = 5
)
Arguments
share.time |
observed resharing times, sorted, share.time[1] =0 |
degree |
observed node degrees |
p.time |
equally spaced vector of time to estimate the infectiousness, p.time[1]=0 |
max.window |
maximum span of the locally weight kernel |
min.window |
minimum span of the locally weight kernel |
min.count |
the minimum number of resharings included in the window |
Details
Use a triangular kernel with shape changing over time. At time p.time, use a triangluer kernel with slope = min(max(1/(p.time
/2), 1/min.window
), max.window
).
Value
a list of three vectors:
infectiousness. the estimated infectiousness
p.up. the upper 95 percent approximate confidence interval
p.low. the lower 95 percent approximate confidence interval
Examples
data(tweet)
pred.time <- seq(0, 6 * 60 * 60, by = 60)
infectiousness <- get.infectiousness(tweet[, 1], tweet[, 2], pred.time)
plot(pred.time, infectiousness$infectiousness)
[Package seismic version 1.1 Index]