pc_Sigma {segMGarch} | R Documentation |
Method to simulate correlated variables with change-points
Description
An S4 method that takes a simMGarch
object and outputs simulated correlated time series with a piecewise constant covariance matrix.
The correlations are generated as \sigma_{i, i'} = \rho^{|i-i'|}
with \rho
taking values from (-1,1)
. The exact variables that will contain a change-point are
randomly selected and controlled by r
in the simMGarch
object.
Usage
pc_Sigma(object)
## S4 method for signature 'simMGarch'
pc_Sigma(object)
Arguments
object |
A |
References
Cho, Haeran, and Karolos Korkas. "High-dimensional GARCH process segmentation with an application to Value-at-Risk." arXiv preprint arXiv:1706.01155 (2017).
Examples
cp=500
n=2000
pw.CCC.obj <- new("simMGarch")
pw.CCC.obj@changepoints=cp
pw.CCC.obj@n=n
pc_Sigma.obj <- pc_Sigma(pw.CCC.obj)
par(mfrow=c(1,2))
#requires corrplot library
#correlation matrix before the changepoint
#corrplot::corrplot.mixed(cor(pc_Sigma.obj@cor_errors[1:cp,]), order="hclust", tl.col="black")
#correlation matrix after the changepoint
#corrplot::corrplot.mixed(cor(pc_Sigma.obj@cor_errors[(cp+1):n,]), order="hclust", tl.col="black")
[Package segMGarch version 1.2 Index]