predict.cv.sdwd {sdwd} | R Documentation |
make predictions from a "cv.sdwd" object
Description
This function predicts the class labels of new observations by the sparse DWD at the lambda
values suggested by cv.sdwd
.
Usage
## S3 method for class 'cv.sdwd'
predict(object, newx, s=c("lambda.1se","lambda.min"),...)
Arguments
object |
A fitted |
newx |
A matrix of new values for |
s |
Value(s) of the L1 tuning parameter |
... |
Not used. Other arguments to |
Details
This function uses the cross-validation results to making predictions. This function is modified based on the predict.cv
function from the glmnet
and the gcdnet
packages.
Value
Predicted class labels or fitted values, depending on the choice of s
and the ... argument passed on to the sdwd
method.
Author(s)
Boxiang Wang and Hui Zou
Maintainer: Boxiang Wang boxiang-wang@uiowa.edu
References
Wang, B. and Zou, H. (2016)
“Sparse Distance Weighted Discrimination", Journal of Computational and Graphical Statistics, 25(3), 826–838.
https://www.tandfonline.com/doi/full/10.1080/10618600.2015.1049700
Yang, Y. and Zou, H. (2013)
“An Efficient Algorithm for Computing the HHSVM and Its Generalizations",
Journal of Computational and Graphical Statistics, 22(2), 396–415.
https://www.tandfonline.com/doi/full/10.1080/10618600.2012.680324
Friedman, J., Hastie, T., and Tibshirani, R. (2010), "Regularization paths for generalized
linear models via coordinate descent," Journal of Statistical Software, 33(1), 1–22.
https://www.jstatsoft.org/v33/i01/paper
See Also
cv.sdwd
, and coef.cv.sdwd
methods.
Examples
data(colon)
colon$x = colon$x[ , 1:100] # this example only uses the first 100 columns
set.seed(1)
cv = cv.sdwd(colon$x, colon$y, lambda2=1, nfolds=5)
predict(cv$sdwd.fit, newx=colon$x[2:5, ],
s=cv$lambda.1se, type="class")