plot.sdwd {sdwd} | R Documentation |
plot coefficients for the sparse DWD
Description
Plots the solution paths for a fitted sdwd
object.
Usage
## S3 method for class 'sdwd'
plot(x, xvar=c("norm", "lambda"), color=FALSE, label=FALSE, ...)
Arguments
x |
A fitted |
xvar |
Specifies the X-axis. If |
color |
If |
label |
If |
... |
Other graphical parameters to |
Details
Plots the solution paths as a coefficient profile plot. This function is modified based on the plot
function from the gcdnet
and the glmnet
packages.
Author(s)
Boxiang Wang and Hui Zou
Maintainer: Boxiang Wang boxiang-wang@uiowa.edu
References
Wang, B. and Zou, H. (2016)
“Sparse Distance Weighted Discrimination", Journal of Computational and Graphical Statistics, 25(3), 826–838.
https://www.tandfonline.com/doi/full/10.1080/10618600.2015.1049700
Yang, Y. and Zou, H. (2013)
“An Efficient Algorithm for Computing the HHSVM and Its Generalizations",
Journal of Computational and Graphical Statistics, 22(2), 396–415.
https://www.tandfonline.com/doi/full/10.1080/10618600.2012.680324
Friedman, J., Hastie, T., and Tibshirani, R. (2010), "Regularization paths for generalized
linear models via coordinate descent," Journal of Statistical Software, 33(1), 1–22.
https://www.jstatsoft.org/v33/i01/paper
See Also
print.sdwd
, predict.sdwd
, coef.sdwd
, plot.sdwd
, and cv.sdwd
.
Examples
data(colon)
fit = sdwd(colon$x, colon$y)
par(mfrow=c(1,3))
# plots against the L1-norm of the coefficients
plot(fit)
# plots against the log-lambda sequence
plot(fit, xvar="lambda", label=TRUE)
# plots with colors
plot(fit, color=TRUE)