sigma_u {sdrt}R Documentation

The tuning parameter for the estimation of the time series central mean subspace

Description

‘sigma_u()’ estimates the turning parameter needed to estimate time series central mean subspace in Fourier Method.

Usage

sigma_u(y, p, d, w1_list=seq(0.1,0.5,by=0.1),space="mean",
                                 std=FALSE,density="kernel",method="FM",B=20)

Arguments

y

A univariate time series observations.

p

Integer value. The lag of the time series.

d

Integer value. The dimension of the time series central mean subspace.

w1_list

(default {0.1, 0.2,0.3,0.4,0.5}). The sequence of candidate list for the tuning parameter.

space

(default “mean”). Specify the SDR subspace needed to be estimated.

std

(default FALSE). If TRUE, then standardizing the time series observations.

density

(default “kernel”). Specify the density function for the estimation (“kernel” or “normal”).

method

(default “FM”). Specify the estimation method. (“FM” or “NW”).

B

(default 20). Number of block bootstrap samples.

Value

The output is a length(sw2_seq) dimensional vector.

dis_sw2

The average block boostrap distances for each candidate list of values.

References

Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.

Examples


data("lynx")
y <- log10(lynx)
p <- 3
d <- 1
w1_list=seq(0.1,0.5,by=0.1)
Tuning.model=sigma_u(y, p, d, w1_list=w1_list, std=FALSE, B=10)
Tuning.model$sigma_u_hat


[Package sdrt version 1.0.0 Index]