| sigma_u {sdrt} | R Documentation | 
The tuning parameter for the estimation of the time series central mean subspace
Description
‘sigma_u()’ estimates the turning parameter needed to estimate time series central mean subspace in Fourier Method.
Usage
sigma_u(y, p, d, w1_list=seq(0.1,0.5,by=0.1),space="mean",
                                 std=FALSE,density="kernel",method="FM",B=20)
Arguments
| y | A univariate time series observations. | 
| p | Integer value. The lag of the time series. | 
| d | Integer value. The dimension of the time series central mean subspace. | 
| w1_list | (default {0.1, 0.2,0.3,0.4,0.5}). The sequence of candidate list for the tuning parameter. | 
| space | (default “mean”). Specify the SDR subspace needed to be estimated. | 
| std | (default FALSE). If TRUE, then standardizing the time series observations. | 
| density | (default “kernel”). Specify the density function for the estimation (“kernel” or “normal”). | 
| method | (default “FM”). Specify the estimation method. (“FM” or “NW”). | 
| B | (default 20). Number of block bootstrap samples. | 
Value
The output is a length(sw2_seq) dimensional vector.
| dis_sw2 | The average block boostrap distances for each candidate list of values. | 
References
Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.
Examples
data("lynx")
y <- log10(lynx)
p <- 3
d <- 1
w1_list=seq(0.1,0.5,by=0.1)
Tuning.model=sigma_u(y, p, d, w1_list=w1_list, std=FALSE, B=10)
Tuning.model$sigma_u_hat