sdrt {sdrt} | R Documentation |
Estimate the SDR subspaces for univariate time series data.
Description
‘sdrt()’ is the main function to estimate the SDR subspaces in time series.
Usage
sdrt(y, p, d, w1 = 0.1, space = "mean", std = FALSE,
density = "normal", method = "FM",n.grid=10)
Arguments
y |
A univariate time series observations. |
p |
Integer value. The lag of the time series. |
d |
Integer value (<p). The dimension of the time series central mean subspace. |
w1 |
(default 0.1). The tuning parameter of the “FM” estimation method. |
space |
(default “mean”). Specify the SDR subspace needed to be estimated. |
std |
(default FALSE). If TRUE, then standardize the data. |
density |
(default “kernel”). Specify the density function for the estimation (“kernel” or “normal”). |
method |
(default “FM”). Specify the estimation method (“FM” or “NW”). |
n.grid |
(default 10). Number of searches for the initial value in “NW” method |
Value
The output is a p-by-d basis matrix for the TS-CMS.
References
Park J. H., Sriram T. N. and Yin X. (2010). Dimension Reduction in Time Series. Statistica Sinica. 20, 747-770.
Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.
See Also
Examples
data("lynx")
y <- log10(lynx)
p <- 3
d <- 1
fit.model <- sdrt(y, p, d=1,method="FM",density = "kernel")
fit.model$eta_hat