pd.boots {sdrt} | R Documentation |
Select the model parameters using Fourier transformation method.
Description
‘pd.boots()’ estimates the number of lags in the model and the dimension of the time series central mean subspace.
Usage
pd.boots(y, p_list=seq(2,6,by=1), w1=0.1, space = "mean",std = FALSE,
density = "kernel", method = "FM", B=50)
Arguments
y |
A univariate time series observations. |
p_list |
(default {2,3,4,5,6}). The candidate list of the number of lags, p. |
w1 |
(default 0.1). The tuning parameter of the estimation. |
space |
(default “mean”). Specify the SDR subspace needed to be estimated. |
std |
(default FALSE). If TRUE, then standardizing the time series observations. |
density |
(default “kernel”). Density function for the estimation (“kernel” or “normal”). |
method |
(default “FM”). Estimation method (“FM” or “NW”). |
B |
(default 50). Number of block bootstrap sample. |
Value
The output is a p-by-p matrix, estimated p and d.
dis_dp |
The average block bootsrap distances. |
p_hat |
The estimator for p. |
d_hat |
The estimator for d. |
References
Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.
Examples
data("lynx")
y <- log10(lynx)
p_list=seq(2,5,by=1)
fit.model=pd.boots(y,p_list,w1=0.1,B=10)
fit.model$dis_pd
fit.model$p_hat
fit.model$d_hat