correlation_groups {sdmpredictors} | R Documentation |
Groups layers based on the Pearson correlation
Description
correlation_groups
returns groups of layer codes such as each layer
from one group has an absolute Pearson product-moment correlation coefficient
(Pearson's r) that is smaller than the maximum_correlation (default 0.7) with
each variable in any other group. The correlation values of quadratic layers
are used for creating the groups but only non quadratic layer codes are
returned.
Usage
correlation_groups(layers_correlation, max_correlation=0.7)
Arguments
layers_correlation |
matrix or dataframe. A square matrix with the layers correlations you want to group. |
max_correlation |
number. The maximum correlation 2 layers may have before they are put in the same correlation group. |
Value
A list of vectors with each vector containing the layer codes of one correlation group.
References
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., ... Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 027-046. doi:10.1111/j.1600-0587.2012.07348.x Barbet-Massin, M. & Jetz, W. (2014). A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling. Diversity and Distributions, 20(11), 1285-1295. doi:10.1111/ddi.12229
See Also
layers_correlation list_layers
layer_stats
Examples
corr <- layers_correlation(c("BO_calcite", "BO_damin", "MS_bathy_5m"))
print(corr)
print(correlation_groups(corr, max_correlation=0.6))