| simple.ef2 {sde} | R Documentation |
Simple estimating function based on the infinitesimal generator a the diffusion process
Description
Apply a simple estimating function based on the infinitesimal generator of a diffusion to find estimates of the parameters of a process solution of that particular stochastic differential equation.
Usage
simple.ef2(X, drift, sigma, h, h.x, h.xx, guess, lower,
upper)
Arguments
X |
a |
drift |
an expression for the drift coefficient; see details. |
sigma |
an expression for the diffusion coefficient; see details. |
h |
an expression of |
h.x |
an expression of |
h.xx |
an expression of |
guess |
initial value of the parameters; see details. |
lower |
lower bounds for the parameters; see details. |
upper |
upper bounds for the parameters; see details. |
Details
The function simple.ef2 minimizes the simple estimating function
of the form sum_i f_i(x;theta) = 0, where f is the result of
applying the infinitesimal generator of the diffusion to the
function h. This involves the drift and diffusion coefficients plus
the first two derivatives of h. If not provided by the user, the derivatives
are calculated by the function.
Value
x |
a vector of estimates |
Author(s)
Stefano Maria Iacus
References
Kessler, M. (1997) Estimation of an ergodic diffusion from discrete observations, Scand. J. Statist., 24, 211-229.
Kessler, M. (2000) Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process, Scand. J. Statist., 27, 65-82.
Examples
set.seed(123)
d <- expression(10 - x)
s <- expression(sqrt(x))
x0 <- 10
sde.sim(X0=x0,drift=d, sigma=s,N=1500,delta=0.1) -> X
# rather difficult problem unless a good initial guess is given
d <- expression(alpha + theta*x)
s <- expression(x^gamma)
h <- list(expression(x), expression(x^2), expression(x^2))
simple.ef2(X, d, s, h, lower=c(0,-Inf,0), upper=c(Inf,0,1))