rcOU {sde} | R Documentation |
Ornstein-Uhlenbeck or Vasicek process conditional law
Description
Density, distribution function, quantile function, and
random generation for the conditional law X(t+D_t) | X(t)=x_0
of the Ornstein-Uhlenbeck process,
also known as the Vasicek process.
Usage
dcOU(x, Dt, x0, theta, log = FALSE)
pcOU(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
qcOU(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
rcOU(n=1, Dt, x0, theta)
Arguments
x |
vector of quantiles. |
p |
vector of probabilities. |
Dt |
lag or time. |
x0 |
the value of the process at time |
theta |
parameter of the Ornstein-Uhlenbeck process; see details. |
n |
number of random numbers to generate from the conditional distribution. |
log , log.p |
logical; if TRUE, probabilities |
lower.tail |
logical; if TRUE (default), probabilities are |
Details
This function returns quantities related to the conditional law of the process solution of
{\rm d}X_t = (\theta_1 - \theta_2 X_t){\rm d}t + \theta_3 {\rm d}W_t.
Constraints: \theta_2>0, \theta_3>0
.
Please note that the process is stationary only if \theta_2>0
.
Value
x |
a numeric vector |
Author(s)
Stefano Maria Iacus
References
Uhlenbeck, G. E., Ornstein, L. S. (1930) On the theory of Brownian motion, Phys. Rev., 36, 823-841.
Vasicek, O. (1977) An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5, 177-188.
See Also
Examples
rcOU(n=1, Dt=0.1, x0=1, theta=c(0,2,1))