rcCIR {sde} | R Documentation |
Conditional law of the Cox-Ingersoll-Ross process
Description
Density, distribution function, quantile function and
random generation for the conditional law X(t+D_t) | X(t)=x_0
of the Cox-Ingersoll-Ross
process.
Usage
dcCIR(x, Dt, x0, theta, log = FALSE)
pcCIR(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
qcCIR(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
rcCIR(n=1, Dt, x0, theta)
Arguments
x |
vector of quantiles. |
p |
vector of probabilities. |
Dt |
lag or time. |
x0 |
the value of the process at time |
theta |
parameter of the Ornstein-Uhlenbeck process; see details. |
n |
number of random numbers to generate from the conditional distribution. |
log , log.p |
logical; if TRUE, probabilities |
lower.tail |
logical; if TRUE (default), probabilities are |
Details
This function returns quantities related to the conditional law of the process solution of
{\rm d}X_t = (\theta_1-\theta_2 X_t){\rm d}t + \theta_3\sqrt{X_t}{\rm d}W_t.
Constraints: 2\theta_1> \theta_3^2
, all \theta
positive.
Value
x |
a numeric vector |
Author(s)
Stefano Maria Iacus
References
Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985) A theory of the term structure of interest rates, Econometrica, 53, 385-408.
See Also
Examples
rcCIR(n=1, Dt=0.1, x0=1, theta=c(6,2,2))