linear.mart.ef {sde} | R Documentation |
Linear martingale estimating function
Description
Apply a linear martingale estimating function to find estimates of the parameters of a process solution of a stochastic differential equation.
Usage
linear.mart.ef(X, drift, sigma, a1, a2, guess, lower, upper,
c.mean, c.var)
Arguments
X |
a ts object containing a sample path of an sde. |
drift |
an expression for the drift coefficient; see details. |
sigma |
an expression for the diffusion coefficient; see details. |
a1 , a2 |
weights or instruments. |
c.mean |
expressions for the conditional mean. |
c.var |
expressions for the conditional variance. |
guess |
initial value of the parameters; see details. |
lower |
lower bounds for the parameters; see details. |
upper |
upper bounds for the parameters; see details. |
Details
The function linear.mart.ef
minimizes a linear martingale
estimating function that is a particular case of the polynomial
martingale estimating functions.
Value
x |
a vector of estimates |
Author(s)
Stefano Maria Iacus
References
Bibby, B., Soerensen, M. (1995) Martingale estimating functions for discretely observed diffusion processes, Bernoulli, 1, 17-39.
Examples
set.seed(123)
d <- expression(-1 * x)
s <- expression(1)
x0 <- rnorm(1,sd=sqrt(1/2))
sde.sim(X0=x0,drift=d, sigma=s,N=1000,delta=0.1) -> X
d <- expression(-theta * x)
linear.mart.ef(X, d, s, a1=expression(-x), lower=0, upper=Inf,
c.mean=expression(x*exp(-theta*0.1)),
c.var=expression((1-exp(-2*theta*0.1))/(2*theta)))