cpoint {sde} | R Documentation |
Volatility change-point estimator for diffusion processes
Description
Volatility change-point estimator for diffusion processes based on least squares.
Usage
cpoint(x, mu, sigma)
Arguments
x |
a |
mu |
a function of |
sigma |
a function of |
Details
The function returns a list of elements containing the discrete k0
and continuous tau0
change-point instant, the estimated volatilities before (theta1
) and after (theta2
) the time change.
The model is assumed to be of the form
{\rm d}X_t = b(X_t){\rm d}t + \theta \sigma(X_t){\rm d}W_t
where theta
= theta1
for t<=tau0
and theta
= theta2
otherwise.
If the drift coefficient is unknown, the model
{\rm d}X_t = b(X_t){\rm d}t + \theta {\rm d}W_t
is considered and b
is estimated nonparametrically.
Value
X |
a list |
Author(s)
Stefano Maria Iacus
Examples
tau0 <- 0.6
k0 <- ceiling(1000*tau0)
set.seed(123)
X1 <- sde.sim(X0=1, N=2*k0, t0=0, T=tau0, model="CIR",
theta=c(6,2,1))
X2 <- sde.sim(X0=X1[2*k0+1], N=2*(1000-k0), t0=tau0,
T=1, model="CIR", theta=c(6,2,3))
Y <- ts(c(X1,X2[-1]), start=0, deltat=deltat(X1))
X <- window(Y,deltat=0.01)
DELTA <- deltat(X)
n <- length(X)
mu <- function(x) 6-2*x
sigma <- function(x) sqrt(x)
cp <- cpoint(X,mu,sigma)
cp
plot(X)
abline(v=tau0,lty=3)
abline(v=cp$tau0,col="red")
# nonparametric estimation
cpoint(X)
[Package sde version 2.0.18 Index]