dRisk {sdcMicro} | R Documentation |
overal disclosure risk
Description
Distance-based disclosure risk estimation via standard deviation-based intervals around observations.
Usage
dRisk(obj, ...)
Arguments
obj |
a |
... |
possible arguments are:
|
Details
An interval (based on the standard deviation) is built around each value of the perturbed value. Then we look if the original values lay in these intervals or not. With parameter k one can enlarge or down scale the interval.
Value
The disclosure risk or/and the modified sdcMicroObj-class
Author(s)
Matthias Templ
References
see method SDID in Mateo-Sanz, Sebe, Domingo-Ferrer. Outlier Protection in Continuous Microdata Masking. International Workshop on Privacy in Statistical Databases. PSD 2004: Privacy in Statistical Databases pp 201-215.
Templ, M. Statistical Disclosure Control for Microdata: Methods and Applications in R. Springer International Publishing, 287 pages, 2017. ISBN 978-3-319-50272-4. doi:10.1007/978-3-319-50272-4
See Also
Examples
data(free1)
free1 <- as.data.frame(free1)
m1 <- microaggregation(free1[, 31:34], method="onedims", aggr=3)
m2 <- microaggregation(free1[, 31:34], method="pca", aggr=3)
dRisk(obj=free1[, 31:34], xm=m1$mx)
dRisk(obj=free1[, 31:34], xm=m2$mx)
dUtility(obj=free1[, 31:34], xm=m1$mx)
dUtility(obj=free1[, 31:34], xm=m2$mx)
## for objects of class sdcMicro:
data(testdata2)
sdc <- createSdcObj(testdata2,
keyVars=c('urbrur','roof','walls','water','electcon','relat','sex'),
numVars=c('expend','income','savings'), w='sampling_weight')
## this is already made internally: sdc <- dRisk(sdc)
## and already stored in sdc