mdf_ig {sdPrior} | R Documentation |
Marginal Density for Given Scale Parameter and Inverse Gamma Prior for \tau^2
Description
This function computes the marginal density of z_p'\beta
for inverse gamma
hyperpriors with shape parameter a=1.
Usage
mdf_ig(f, theta, Z, Kinv)
Arguments
f |
point the marginal density to be evaluated at. |
theta |
denotes the scale parameter of the inverse gamma hyperprior. |
Z |
the row of the design matrix evaluated. |
Kinv |
the generalised inverse of K. |
Value
the marginal density evaluated at point x.
Author(s)
Nadja Klein
References
Nadja Klein and Thomas Kneib (2015). Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression. Working Paper.
Examples
set.seed(123)
library(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+l-1=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B,nrow=1)
fgrid <- seq(-3,3,length=1000)
mdf <- mdf_ig(fgrid,theta=0.0028,Z=Z,Kinv=Kinv)
[Package sdPrior version 1.0-0 Index]