| mdbeta {sdPrior} | R Documentation |
Marginal Density of \beta
Description
This function computes the marginal density of \beta and for \beta on an equidistant grid specified by the user.
Currently only implemented for dim(\beta)=1,2.
Usage
mdbeta(D = 1, rangebeta, ngridbeta, a = 5, b = 25, r = 0.00025,
a0 = 0.5, b0 = 0.5, plot = FALSE, log = FALSE)
Arguments
D |
dimension of |
rangebeta |
a vector containing the start and ending point of |
ngridbeta |
the number of grid values. |
a |
shape parameter of inverse gamma prior of |
b |
scale parameter of inverse gamma prior of |
r |
the scaling parameter |
a0 |
shape parameter of beta prior of |
b0 |
scale parameter of beta prior of |
plot |
logical value (default is |
log |
logical value (default is |
Value
the marginal density, the sequence of \beta and depending on specified plot, log arguments also the log-density and plot functions.
Author(s)
Nadja Klein
References
Nadja Klein, Thomas Kneib, Stefan Lang and Helga Wagner (2016). Spike and Slab Priors for Effect Selection in Distributional Regression. Working Paper.
Examples
set.seed(123)
#1-dimensional example
D = 1
ngridbeta = 1000
rangebeta = c(0.000001,1)
a0 = b0 = 0.5
a = 5
b = 50
r = 0.005
mdf <- mdbeta(D=1,rangebeta,ngridbeta,a=a,b=b,r=r,a0=a0,b0=b0)
#2-dimensional example
D = 2
ngridbeta = 100
rangebeta = c(0.000001,8)
a0 = b0 = 0.5
a = 5
b = 50
r = 0.005
mdf <- mdbeta(D=2,rangebeta,ngridbeta,a=a,b=b,r=r,a0=a0,b0=b0,plot=TRUE,log=TRUE)
mdf$logpl()