get_theta_linear {sdPrior}R Documentation

Find Scale Parameter for Inverse Gamma Hyperprior of Linear Effects with Spike and Slab Prior

Description

This function implements a optimisation routine that computes the scale parameter v2v_2 and selection parameter rr of the inverse gamma prior IG(v1v_1,v2v_2) for τ2\tau^2 when τ2N(0,r(δ)τ2)\tau^2\sim N(0,r(\delta)\tau^2) and given shape paramter such that approximately P(βc2spike)1α2P(\beta\le c_2|spike)\ge 1-\alpha_2 and P(βc1slab)1α1P(\beta\ge c_1|slab)\ge 1-\alpha1.
α1\alpha_1 and α2\alpha_2 should not be smaller than 0.1 due to numerical sensitivity and possible instability. Better change c1c_1, c2c_2.

Usage

get_theta_linear(alpha1 = 0.1, alpha2 = 0.1, c1 = 0.1, c2 = 0.1,
  eps = .Machine$double.eps, v1 = 5)

Arguments

alpha1

denotes the 1-α1\alpha_1 level for v2v_2.

alpha2

denotes the 1-α2\alpha_2 level for rr.

c1

denotes the expected range of the linear effect in the slab part.

c2

denotes the expected range of the linear effect in the spike part.

eps

denotes the error tolerance of the result, default is .Machine$double.eps.

v1

is the shape parameter of the inverse gamma distribution, default is 5.

Value

an object of class list with values from uniroot.

Warning

α1\alpha_1 and α2\alpha_2 should not be smaller than 0.1 due to numerical sensitivity and possible instability. Better change c1c_1, c2c_2.

Author(s)

Nadja Klein

References

Nadja Klein, Thomas Kneib, Stefan Lang and Helga Wagner (2016). Automatic Effect Selection in Distributional Regression via Spike and Slab Priors. Working Paper.

Examples

set.seed(123)
result <- get_theta_linear()
r <- result$r
v2 <- result$v2

get_theta_linear(alpha1=0.1,alpha2=0.1,c1=0.5,c2=0.1,v1=5) 


[Package sdPrior version 1.0-0 Index]