get_theta_gbp {sdPrior} | R Documentation |
Find Scale Parameter for Generalised Beta Prime (Half-Cauchy) Hyperprior
Description
This function implements a optimisation routine that computes the scale parameter \theta
of the gamma prior for \tau^2
(corresponding to a half cauchy for \tau
)
for a given design matrix and prior precision matrix
such that approximately P(|f(x_{k}|\le c,k=1,\ldots,p)\ge 1-\alpha
Usage
get_theta_gbp(alpha = 0.01, method = "integrate", Z, c = 3,
eps = .Machine$double.eps, Kinv)
Arguments
alpha |
denotes the 1- |
method |
with |
Z |
the design matrix. |
c |
denotes the expected range of the function. |
eps |
denotes the error tolerance of the result, default is |
Kinv |
the generalised inverse of K. |
Value
an object of class list
with values from uniroot
.
Author(s)
Nadja Klein
References
Nadja Klein and Thomas Kneib (2015). Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression. Working Paper.
Andrew Gelman (2006). Prior Distributions for Variance Parameters in Hierarchical Models. Bayesian Analysis, 1(3), 515–533.
Examples
set.seed(123)
require(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+l-1=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B,nrow=1)
theta <- get_theta_gbp(alpha = 0.01, method = "integrate", Z = Z,
c = 3, eps = .Machine$double.eps, Kinv = Kinv)$root
## Not run:
set.seed(91179)
library(BayesX)
library(MASS)
# prior precision matrix to zambia data set
K <- read.gra(system.file("examples/zambia.gra", package="sdPrior"))
# generalised inverse of K
Kinv <- ginv(K)
# read data
dat <- read.table(system.file("examples/zambia_height92.raw", package="sdPrior"), header = TRUE)
# design matrix for spatial component
Z <- t(sapply(dat$district, FUN=function(x){1*(x==rownames(K))}))
# get scale parameter
theta <- get_theta_gbp(alpha = 0.01, method = "integrate", Z = Z,
c = 3, eps = .Machine$double.eps, Kinv = Kinv)$root
## End(Not run)