get_residual_var {sctransform} | R Documentation |
Return variance of residuals of regularized models
Description
This never creates the full residual matrix and can be used to determine highly variable genes.
Usage
get_residual_var(
vst_out,
umi,
residual_type = "pearson",
res_clip_range = c(-sqrt(ncol(umi)), sqrt(ncol(umi))),
min_variance = vst_out$arguments$min_variance,
cell_attr = vst_out$cell_attr,
bin_size = 256,
verbosity = vst_out$arguments$verbosity,
verbose = NULL,
show_progress = NULL
)
Arguments
vst_out |
The output of a vst run |
umi |
The UMI count matrix that will be used |
residual_type |
What type of residuals to return; can be 'pearson' or 'deviance'; default is 'pearson' |
res_clip_range |
Numeric of length two specifying the min and max values the residuals will be clipped to; default is c(-sqrt(ncol(umi)), sqrt(ncol(umi))) |
min_variance |
Lower bound for the estimated variance for any gene in any cell when calculating pearson residual; default is vst_out$arguments$min_variance |
cell_attr |
Data frame of cell meta data |
bin_size |
Number of genes to put in each bin (to show progress) |
verbosity |
An integer specifying whether to show only messages (1), messages and progress bars (2) or nothing (0) while the function is running; default is 2 |
verbose |
Deprecated; use verbosity instead |
show_progress |
Deprecated; use verbosity instead |
Value
A vector of residual variances (after clipping)
Examples
vst_out <- vst(pbmc, return_cell_attr = TRUE)
res_var <- get_residual_var(vst_out, pbmc)