sperr_sf {scoringfunctions} | R Documentation |
Squared percentage error scoring function
Description
The function sperr_sf computes the squared percentage error scoring function
when y
materializes and x
is the predictive
\dfrac{\textnormal{E}_F [Y^{-1}]}{\textnormal{E}_F [Y^{-2}]}
functional.
The squared percentage error scoring function is defined in p. 752 in Gneiting (2011).
Usage
sperr_sf(x, y)
Arguments
x |
Predictive |
y |
Realization (true value) of process. It can be a vector of length
|
Details
The squared percentage error scoring function is defined by:
S(x, y) := ((x - y)/y)^{2}
Domain of function:
x > 0
y > 0
Range of function:
S(x, y) \geq 0, \forall x, y > 0
Value
Vector of squared percentage errors.
Note
For details on the squared percentage error scoring function, see Park and Stefanski (1998) and Gneiting (2011).
The squared percentage error scoring function is negatively oriented (i.e. the smaller, the better).
The squared percentage error scoring function is strictly consistent for the
\dfrac{\textnormal{E}_F [Y^{-1}]}{\textnormal{E}_F [Y^{-2}]}
functional.
References
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. doi:10.1198/jasa.2011.r10138.
Park H, Stefanski LA (1998) Relative-error prediction. Statistics and Probability Letters 40(3):227–236. doi:10.1016/S0167-7152(98)00088-1.
Examples
# Compute the squared percentage error scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x = 1:3
)
df$squared_percentage_error <- sperr_sf(x = df$x, y = df$y)
print(df)