relerr_sf {scoringfunctions} | R Documentation |
Relative error scoring function (MAE-PROP scoring function)
Description
The function relerr_sf computes the relative error scoring function when y
materializes and x
is the predictive \textnormal{med}^{(1)}(F)
functional.
The relative error scoring function is defined in Table 1 in Gneiting (2011).
The relative error scoring function is referred to as MAE-PROP scoring function in eq. (13) in Patton (2011).
Usage
relerr_sf(x, y)
Arguments
x |
Predictive |
y |
Realization (true value) of process. It can be a vector of length
|
Details
The relative error scoring function is defined by:
S(x, y) := |(x - y)/x|
Domain of function:
x > 0
y > 0
Range of function:
S(x, y) \geq 0, \forall x, y > 0
Value
Vector of relative errors.
Note
For details on the relative error scoring function, see Gneiting (2011).
The \beta
-median functional, \textnormal{med}^{(\beta)}(F)
is the
median of a probability distribution whose density is proportional to
y^\beta f(y)
, where f
is the density of the probability distribution
F
of y
(Gneiting 2011).
The relative error scoring function is negatively oriented (i.e. the smaller, the better).
The relative error scoring function is strictly consistent for the
\textnormal{med}^{(1)}(F)
functional relative to the family
\mathbb{F}
of potential probability distributions (whose densities are
proportional to y f(y)
, where f
is the density of the
probability distribution F
for the future y
) (see Theorems 5 and 9
in Gneiting 2011).
References
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. doi:10.1198/jasa.2011.r10138.
Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160(1):246–256. doi:10.1016/j.jeconom.2010.03.034.
Examples
# Compute the relative error scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x = 1:3
)
df$relative_error <- relerr_sf(x = df$x, y = df$y)
print(df)