maelog_sf {scoringfunctions} | R Documentation |
MAE-LOG scoring function
Description
The function maelog_sf computes the MAE-LOG scoring function when y
materializes and x
is the predictive median functional.
The MAE-LOG scoring function is defined by eq. (11) in Patton (2011).
Usage
maelog_sf(x, y)
Arguments
x |
Predictive median functional (prediction). It can be a vector of length
|
y |
Realization (true value) of process. It can be a vector of length
|
Details
The MAE-LOG scoring function is defined by:
S(x, y) := |\log(x/y)|
Domain of function:
x > 0
y > 0
Range of function:
S(x, y) \geq 0, \forall x, y > 0
Value
Vector of MAE-LOG losses.
Note
For details on the MAE-LOG scoring function, see Gneiting (2011) and Patton (2011).
The median functional is the median of the probability distribution F
of
y
(Gneiting 2011).
The MAE-LOG scoring function is negatively oriented (i.e. the smaller, the better).
The MAE-LOG scoring function is strictly consistent for the median functional
relative to the family \mathbb{F}
of potential probability distributions
F
for the future y
for which E_F[\log(Y)]
exists and is finite
(Thomson 1979, Saerens 2000, Gneiting 2011).
References
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. doi:10.1198/jasa.2011.r10138.
Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160(1):246–256. doi:10.1016/j.jeconom.2010.03.034.
Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Transactions on Neural Networks 11(6):1263–1271. doi:10.1109/72.883416.
Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of Economic Theory 20(3):360–380. doi:10.1016/0022-0531(79)90042-5.
Examples
# Compute the MAE-LOG scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x = 1:3
)
df$mae_log_penalty <- maelog_sf(x = df$x, y = df$y)
print(df)