maelog_sf {scoringfunctions} | R Documentation |
MAE-LOG scoring function
Description
The function maelog_sf computes the MAE-LOG scoring function when
materializes and
is the predictive median functional.
The MAE-LOG scoring function is defined by eq. (11) in Patton (2011).
Usage
maelog_sf(x, y)
Arguments
x |
Predictive median functional (prediction). It can be a vector of length
|
y |
Realization (true value) of process. It can be a vector of length
|
Details
The MAE-LOG scoring function is defined by:
Domain of function:
Range of function:
Value
Vector of MAE-LOG losses.
Note
For details on the MAE-LOG scoring function, see Gneiting (2011) and Patton (2011).
The median functional is the median of the probability distribution of
(Gneiting 2011).
The MAE-LOG scoring function is negatively oriented (i.e. the smaller, the better).
The MAE-LOG scoring function is strictly consistent for the median functional
relative to the family of potential probability distributions
for the future
for which
exists and is finite
(Thomson 1979, Saerens 2000, Gneiting 2011).
References
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. doi:10.1198/jasa.2011.r10138.
Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160(1):246–256. doi:10.1016/j.jeconom.2010.03.034.
Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Transactions on Neural Networks 11(6):1263–1271. doi:10.1109/72.883416.
Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of Economic Theory 20(3):360–380. doi:10.1016/0022-0531(79)90042-5.
Examples
# Compute the MAE-LOG scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x = 1:3
)
df$mae_log_penalty <- maelog_sf(x = df$x, y = df$y)
print(df)