scitb1 {scitb} | R Documentation |
scitb1
Description
You can use it to draw a baseline table of data.
Usage
scitb1(vars,fvars=NULL,strata,data,dec,num,nonnormal=NULL,type=NULL,
statistic=F,atotest=T,NormalTest=NULL,fisher=FALSE,correct=FALSE,Overall=FALSE,smd=FALSE)
Arguments
vars |
The full range of variables you don't want to compare. |
fvars |
Define the categorical variables in your data. |
strata |
Enter the variables to be layered. If you fill in consecutive variables, by default they will be split into 3 layers. |
data |
Enter your data. |
dec |
The precision of the data, which defaults to 2 decimal places. |
num |
When continuous variables are layered, use it to control the number of layers, which defaults to 3. |
nonnormal |
When the data belongs to a non-normal distribution, this parameter is needed to indicate which is variable is non-normally distributed. |
type |
The type of encoding generally does not require input.Contains three types: "A", "B", and "C". |
statistic |
Statistical effect values. Usually, it is the default F, and selecting T will return a statistical effect value. |
atotest |
Check if the data is normally distributed. The default is T. |
NormalTest |
A method for detecting whether data is normally distributed.The default values are Kolmogorov Smirnov test and Kolmogorov Smirnov test.Other options are: "ad", "cvm", "pearson". |
fisher |
Fisher's exact test. The default is FALSE. |
correct |
Chi square test for continuity correction.The default is FALSE. |
Overall |
Generate summary data.The default is FALSE. |
smd |
The default is FALSE. If it is true, return the SMD value. |
Details
Table 1 represents the relationship between the baseline values of the data. This function can be easily done.Creates 'Table 1', i.e., description of baseline patient characteristics, which is essential in every medical research. Supports both continuous and categorical variables, as well as p-values and standardized mean differences.
Value
A data frame.
Examples
## Import data
bc<-prematurity
## Hierarchical variables converted to factors.
bc$race<-as.factor(bc$race)
###Define all variables, categorical and stratified.
allVars <-c("age", "lwt", "smoke", "ptl", "ht", "ui", "ftv", "bwt")
fvars<-c("smoke","ht","ui")
strata<-"race"
out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc)
out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc,statistic=TRUE)
out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc,statistic=TRUE,Overall=TRUE)
out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc,statistic=TRUE,Overall=TRUE,smd=TRUE)
print(out)
###Stratified variables are continuous variables.
allVars <-c("race", "lwt", "smoke", "ptl", "ht", "ui", "ftv", "bwt")
fvars<-c("smoke","ht","ui","race")
strata<-"age"
out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc)
out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc,statistic=TRUE)
out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc,statistic=TRUE,Overall=TRUE,smd=TRUE)
print(out)