pi.sgm {scapesClassification} | R Documentation |
Position index segmentation
Description
Segment raster objects based on position index values.
Usage
pi.sgm(
attTbl,
ngbList,
rNumb = FALSE,
RO,
mainPI = NULL,
secPI = NULL,
cut.mPI = NULL,
cut.sPI = NULL,
min.N = NULL,
plot = FALSE,
r = NULL
)
Arguments
attTbl |
data.frame, the attribute table returned by the function
|
ngbList |
list, the list of neighborhoods returned by the function
|
rNumb |
logic, the neighborhoods of the argument |
RO |
column name, the name of the column with the raster object IDs. |
mainPI |
column name, the name of the column with main position index values. |
secPI |
column name, the name of the column with secondary position index values. |
cut.mPI |
numeric, threshold of main position index values. Cells with values below the threshold are excluded from raster objects. |
cut.sPI |
numeric, threshold of secondary position index values. Cells with values below the threshold are excluded from raster objects. |
min.N |
numeric, the minimum number of cells a raster object has to have to be included in the function output. |
plot |
logic, plot the results. |
r |
single or multi-layer raster of the class |
Details
Raster objects are segmented based on position index values. Two
different position indices can be passed to the function (mainPI
and
secPI
).
Input raster objects are assigned to the same class to flag cells that are part of raster objects;
Cells with values below
mainPI
OR belowmainPI
are flagged as not being part of any raster object;Each non-continuous group of raster object cells will identify an output raster object.
Only raster objects with at least as many cells as specified by the argument
min.N
are included in the function output.If both
mainPI
andsecPI
are equal toNULL
, the function will exclusively filter raster objects based on their size (min.N
).
Value
The function returns a class vector with raster objects IDs. The vector has length equal to the number of rows of the attribute table. NA values are assigned to cells that do not belong to any raster object.
See Also
attTbl()
, ngbList()
, rel.pi()
, pi.add()
Examples
# DUMMY DATA
######################################################################################
# LOAD LIBRARIES
library(scapesClassification)
library(terra)
# LOAD THE DUMMY RASTER
r <- list.files(system.file("extdata", package = "scapesClassification"),
pattern = "dummy_raster\\.tif", full.names = TRUE)
r <- terra::rast(r)
# COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")
# COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r, attTbl=at)
################################################################################
# COMPUTE RASTER OBJECTS
################################################################################
at$RO <- anchor.seed(at, nbs, silent=TRUE, class = NULL, rNumb=TRUE,
cond.filter = "dummy_var > 1",
cond.seed = "dummy_var==max(dummy_var)",
cond.growth = "dummy_var<dummy_var[]",
lag.growth = Inf)
# One input raster object
unique(at$RO)
################################################################################
# NORMALIZED RELATIVE POSITION INDEX
################################################################################
at$relPI <- rel.pi(attTbl = at, RO = "RO", el = "dummy_var", type = "n")
################################################################################
# POSITION INDEX SEGMENTATION
################################################################################
RO1 <- pi.sgm(at, nbs,
RO = "RO", # Raster objects
mainPI = "relPI", # PI segmentation layer
cut.mPI = 0, # segment on relPI values <= 0
plot = FALSE, r = r)
################################################################################
# PLOT
################################################################################
# Convert class vectors to raster
r_RO <- cv.2.rast(r = r, classVector = at$RO)
r_RO1 <- cv.2.rast(r = r, classVector = RO1)
# Plot
oldpar <- par(mfrow = c(1,2))
m <- c(4.5, 0.5, 2, 3.2)
terra::plot(r_RO, type="classes", main="Raster objects - Input", mar=m,
plg=list(x=1, y=1, cex=0.9))
terra::plot(r_RO1, type="classes", main="Raster objects - Output", mar=m,
plg=list(x=1, y=1, cex=0.9))
text(xyFromCell(r,at$Cell), as.character(round(at$relPI,2))) # visualize relPI
text(0.01, 1, "Cut on relPI <= 0", adj=c(0,1), cex = 0.8)
par(oldpar)
# Two output raster objects
unique(RO1)