smooth.construct.tedecv.smooth.spec {scam} | R Documentation |
Tensor product smoothing constructor for bivariate function subject to mixed constraints: monotone decreasing constraint wrt the first covariate and concavity wrt the second one
Description
This is a special method function
for creating tensor product bivariate smooths subject to mixed constraints, monotone decreasing constraint wrt the first covariate and concavity wrt the second one, which is built by
the mgcv
constructor function for smooth terms, smooth.construct
.
It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions.
This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tedecv",m=c(2,2))
,
where q1
and q2
denote the basis dimensions for the marginal smooths.
Usage
## S3 method for class 'tedecv.smooth.spec'
smooth.construct(object, data, knots)
Arguments
object |
A smooth specification object, generated by an |
data |
A data frame or list containing the values of the elements of |
knots |
An optional list containing the knots corresponding to |
Value
An object of class "tedecv.smooth"
. In addition to the usual
elements of a smooth class documented under smooth.construct
of the mgcv
library,
this object contains:
p.ident |
A vector of 0's and 1's for model parameter identification: 1's indicate parameters which will be exponentiated, 0's - otherwise. |
Zc |
A matrix of identifiability constraints. |
Author(s)
Natalya Pya <nat.pya@gmail.com>
References
Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3), 543-559
See Also
smooth.construct.tedmd.smooth.spec
smooth.construct.temicx.smooth.spec
smooth.construct.tedecx.smooth.spec
Examples
## Not run:
## tensor product `tedecv' example
## simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(2*runif(n)-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
{ f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))- 4*x2[j]^2}
f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
## fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tedecv",m=2), data=dat)
## plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b, theta=30)
## plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n) f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))- 4*x2[j]^2
persp(x1,x2,f1,theta = 30, phi = 40)
## End(Not run)