| transform_yj {scales} | R Documentation |
Yeo-Johnson transformation
Description
The Yeo-Johnson transformation is a flexible transformation that is similar
to Box-Cox, transform_boxcox(), but does not require input values to be
greater than zero.
Usage
transform_yj(p)
yj_trans(p)
Arguments
p |
Transformation exponent, |
Details
The transformation takes one of four forms depending on the values of y and \lambda.
-
y \ge 0and\lambda \neq 0:y^{(\lambda)} = \frac{(y + 1)^\lambda - 1}{\lambda} -
y \ge 0and\lambda = 0:y^{(\lambda)} = \ln(y + 1) -
y < 0and\lambda \neq 2:y^{(\lambda)} = -\frac{(-y + 1)^{(2 - \lambda)} - 1}{2 - \lambda} -
y < 0and\lambda = 2:y^{(\lambda)} = -\ln(-y + 1)
References
Yeo, I., & Johnson, R. (2000). A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika, 87(4), 954-959. https://www.jstor.org/stable/2673623
Examples
plot(transform_yj(-1), xlim = c(-10, 10))
plot(transform_yj(0), xlim = c(-10, 10))
plot(transform_yj(1), xlim = c(-10, 10))
plot(transform_yj(2), xlim = c(-10, 10))
[Package scales version 1.3.0 Index]