sbpsi {scaleboot} | R Documentation |
Model Specification Functions
Description
sbpsi.poly
and sbpsi.sing
are \psi
functions to
specify a polynomial model and a singular model, respectively.
Usage
sbpsi.poly(beta,s=1,k=1,sp=-1,lambda=NULL,aux=NULL,check=FALSE)
sbpsi.sing(beta,s=1,k=1,sp=-1,lambda=NULL,aux=NULL,check=FALSE)
sbpsi.sphe(beta,s=1,k=1,sp=-1,lambda=NULL,aux=NULL,check=FALSE)
sbpsi.generic(beta,s=1,k=1,sp=-1,lambda=NULL,aux=NULL,check=FALSE,zfun,eps=0.01)
sbmodelnames(m=1:3,one.sided=TRUE,two.sided=FALSE,rev.sided=FALSE,
poly,sing,poa,pob,poc,pod,sia,sib,sic,sid,sphe,pom,sim)
Arguments
beta |
numeric vector of parameters;
|
s |
|
k |
numeric to specify the order of derivatives. |
sp |
|
lambda |
a numeric of specifying the type of p-values; Bayesian (lambda=0) Frequentist (lambda=1). |
aux |
auxiliary parameter. Currently not used. |
check |
logical for boundary check. |
zfun |
z-value function with (s,beta) as parameters. |
eps |
delta for numerical computation of derivatives. |
m |
numeric vector to specify the numbers of parameters. |
one.sided |
logical to include poly and sing models. |
two.sided |
logical to include poa and sia models. |
rev.sided |
logical to include pob and sib models. |
poly |
maximum number of parameters in poly models. |
sing |
maximum number of parameters in sing models. |
sphe |
maximum number of parameters in sphe models. |
poa |
maximum number of parameters in poa models. |
pob |
maximum number of parameters in pob models. |
poc |
maximum number of parameters in poc models. |
pod |
maximum number of parameters in pod models. |
sia |
maximum number of parameters in sia models. |
sib |
maximum number of parameters in sib models. |
sic |
maximum number of parameters in sic models. |
sid |
maximum number of parameters in sid models. |
pom |
maximum number of parameters in pom models. |
sim |
maximum number of parameters in sim models. |
Details
For k=1
, the sbpsi
functions return their \psi
function
values at \sigma^2=\sigma_0^2
. Currently, four types of
sbpsi
functions are
implemented. sbpsi.poly
defines the polynomial model;
\psi(\sigma^2 | \beta) =
\sum_{j=0}^{m-1} \beta_j \sigma^{2j}
for m\ge1
.
sbpsi.sing
defines the singular model;
\psi(\sigma^2 | \beta) = \beta_0 +
\sum_{j=1}^{m-2} \frac{\beta_j \sigma^{2j}}{1 + \beta_{m-1}(\sigma-1)}
for m\ge3
and 0\le\beta_{m-1}\le1
.
sbpsi.sphe
defines the spherical model; currently the number of
parameters must be $m=3$.
sbpsi.generic
is a generic sbpsi function for specified zfun
.
For k>1
, the sbpsi
functions return values extrapolated at
\sigma^2=\sigma_p^2
using derivatives up to order k-1
evaluated at \sigma^2=\sigma_0^2
;
q_k = \sum_{j=0}^{k-1} \frac{(\sigma_p^2-\sigma_0^2)^j}{j!}
\frac{d^j \psi(x|\beta)}{d x^j}\Bigr|_{\sigma_0^2},
which reduces to \psi(\sigma_0^2|\beta)
for k=1
. In the
summary.scaleboot
, the AU p-values are defined
by p_k = 1-\Phi(q_k)
for k\ge1
.
Value
sbpsi.poly
and sbpsi.sing
are examples of a sbpsi
function; users can develop their own sbpsi functions for better
model fitting by preparing sbpsi.foo
and sbini.foo
functions for model foo
.
If check=FALSE, a sbpsi function returns
the \psi
function value or the extrapolation value.
If check=TRUE, a sbpsi function returns NULL when all
the elements of beta are included in the their valid
intervals. Otherwise, a sbpsi
function returns a list with components
beta
for the parameter value being modified to be on a boundary
of the interval and mask
, a logical vector indicating which
elements are not on the boundary.
sbmodelnames
returns a character vector of model names.
Author(s)
Hidetoshi Shimodaira