sbaic {scaleboot} | R Documentation |
Akaike's Information Criterion
Description
Extract or modify the AIC values for models.
Usage
sbaic(x,...)
## S3 method for class 'scaleboot'
sbaic(x,k,...)
## S3 method for class 'scalebootv'
sbaic(x,...)
sbaic(x) <- value
## S3 replacement method for class 'scaleboot'
sbaic(x) <- value
## S3 replacement method for class 'scalebootv'
sbaic(x) <- value
Arguments
x |
an object used to select a method. |
k |
numeric, the penalty per parameter to be used. |
value |
numeric vector of AIC values for models. |
... |
further arguments passed to and from other methods. |
Details
sbaic
can be used to modify the aic
components for
models in x
as shown in the examples below.
Value
For an object of class "scaleboot"
,
sbaic
returns a numeric vector of AIC values for
models. If
k
is missing, then the aic
components in the fi
vector of
x
are returned. If k
is specified, rss-k*df
is
calculated for each model. For the usual AIC, k=2. For the BIC
(Schwarz's Bayesian information criterion), k=log(sum(x$nb))
.
Author(s)
Hidetoshi Shimodaira
References
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company.
See Also
Examples
data(mam15)
a <- mam15.relltest[["t4"]] # an object of class "scaleboot"
sbaic(a) # print AIC for models
sbaic(a,k=log(sum(a$nb))) # print BIC for models
sbaic(a) <- sbaic(a,k=log(sum(a$nb))) # set BIC
sbaic(a) # print BIC for models