plot.scaleboot {scaleboot} | R Documentation |
Plot Diagnostics for Multiscale Bootstrap
Description
plot
method for class "scaleboot"
.
Usage
## S3 method for class 'scaleboot'
plot(x, models=NULL, select=NULL, sort.by=c("aic","none"),
k=NULL, s=NULL, sp=NULL, lambda=NULL, bpk=NULL,
xval = c("square", "inverse","sigma"),
yval = c("psi", "zvalue", "pvalue"), xlab = NULL,
ylab = NULL,log.xy = "", xlim = NULL, ylim = NULL,
add = F, length.x = 300, main=NULL,
col =1:6, lty = 1:5, lwd = par("lwd"), ex.pch=2:7,
pch = 1, cex = 1, pt.col = col[1],pt.lwd = lwd[1],
legend.x = NULL, inset = 0.1, cex.legend=1,...)
## S3 method for class 'summary.scaleboot'
plot(x, select="average",
k=x$parex$k,s=x$parex$s,sp=x$parex$sp,lambda=x$parex$lambda, ...)
## S3 method for class 'scalebootv'
plot(x,models=attr(x,"models"),sort.by="none",...)
## S3 method for class 'summary.scalebootv'
plot(x, select="average",...)
## S3 method for class 'scaleboot'
lines(x,z,models=names(x$fi), k=NULL,s=NULL,sp=NULL,lambda=NULL,
bpk=NULL, length.x=z$length.x, col=z$col,lty=z$lty,lwd=z$lwd,... )
sblegend(x="topright",y=NULL,z,inset=0.1,...)
sbplotbeta(beta, p=0.05, col.contour=c("blue","red","green"),
drawcontours = TRUE, drawlabels = TRUE,
labcex=1,length=100, cex=1, col="black",
xlim=NULL, ylim=NULL, lim.countourexpand=0 )
Arguments
x |
an object used to select a method.
For |
models |
character vector of model names. Numeric is also allowed. |
select |
"average", "best", or one of the fitted models. |
sort.by |
"aic" or "none". |
k |
k for extrapolation. |
s |
s for extrapolation. |
sp |
sp for extrapolation. |
lambda |
a numeric of specifying the type of p-values; Bayesian (lambda=0) Frequentist (lambda=1). |
bpk |
(experimental for 2-step bootstrap) |
xval |
specifies x-axis.
"square" for |
yval |
specifies y-axis. "zvalue" for
|
xlab |
label for x-axis. |
ylab |
label for y-axis. |
log.xy |
character to specify log-scale. "", "x", "y", or "xy". |
xlim |
range for x-axis. |
ylim |
range for y-axis. |
add |
logical for adding another plot. |
length.x |
the number of segments to draw curves. |
main |
for title. |
col |
color for model curves. |
lty |
lty for model curves. |
lwd |
lwd for model curves. |
ex.pch |
pch for extrapolation. |
pch |
pch for bp points. |
cex |
cex for bp points. |
pt.col |
col for bp points. |
pt.lwd |
lwd for bp points. |
legend.x |
passed to sblegend as the first argument. |
... |
further arguments passed to or from other methods. |
z |
output from previous |
y |
numeric passed to |
inset |
inset distance from the margins, which is passed to
|
cex.legend |
cex for legend |
beta |
matrix of beta values. beta[,1] is beta0, beta[,2] is beta1. |
p |
significance level for drawing contour lines. |
col.contour |
colors for SI, AU, BP. |
drawcontours |
draw contours when TRUE. |
drawlabels |
draw labels at contours when TRUE. |
labcex |
cex for contours. |
length |
grid size for drawing contours. |
lim.countourexpand |
expand contour plotting region |
Details
The plot
method plots bootstrap probabilities and calls the lines
method, which draws fitted curves for models.
Author(s)
Hidetoshi Shimodaira
See Also
Examples
data(mam15)
## a single plot
a <- mam15.relltest[["t4"]] # an object of class "scaleboot"
plot(a,legend="topleft") # x=sigma^2, y=psi
plot(a,xval="inverse",yval="zvalue",
legend="topleft") # x=1/sigma, y=z-value
plot(a,xval="sigma",log="x",yval="pvalue",
legend="topleft") # x=log(sigma), y=probability
## plot of extrapolation
plot(summary(a),legend="topleft")
## multiple plots
b <- mam15.relltest[1:15] # an object of class "scalebootv"
plot(b) # x=sigma^2, y=psi