| plot.scaleboot {scaleboot} | R Documentation | 
Plot Diagnostics for Multiscale Bootstrap
Description
plot method for class "scaleboot".
Usage
## S3 method for class 'scaleboot'
plot(x, models=NULL, select=NULL, sort.by=c("aic","none"),
     k=NULL, s=NULL, sp=NULL, lambda=NULL, bpk=NULL,
     xval = c("square", "inverse","sigma"),
     yval = c("psi", "zvalue", "pvalue"), xlab = NULL,
     ylab = NULL,log.xy = "", xlim = NULL, ylim = NULL,
     add = F, length.x = 300, main=NULL,
     col =1:6, lty = 1:5, lwd = par("lwd"), ex.pch=2:7,
     pch = 1, cex = 1, pt.col = col[1],pt.lwd = lwd[1],
     legend.x = NULL, inset = 0.1, cex.legend=1,...)
## S3 method for class 'summary.scaleboot'
plot(x, select="average",
     k=x$parex$k,s=x$parex$s,sp=x$parex$sp,lambda=x$parex$lambda, ...)
## S3 method for class 'scalebootv'
plot(x,models=attr(x,"models"),sort.by="none",...)
## S3 method for class 'summary.scalebootv'
plot(x, select="average",...)
## S3 method for class 'scaleboot'
lines(x,z,models=names(x$fi), k=NULL,s=NULL,sp=NULL,lambda=NULL,
      bpk=NULL, length.x=z$length.x, col=z$col,lty=z$lty,lwd=z$lwd,... )
sblegend(x="topright",y=NULL,z,inset=0.1,...)
sbplotbeta(beta, p=0.05, col.contour=c("blue","red","green"),
                     drawcontours = TRUE, drawlabels = TRUE,
                     labcex=1,length=100, cex=1, col="black",
                     xlim=NULL, ylim=NULL, lim.countourexpand=0 ) 
Arguments
x | 
 an object used to select a method. 
For   | 
models | 
 character vector of model names. Numeric is also allowed.  | 
select | 
 "average", "best", or one of the fitted models.  | 
sort.by | 
 "aic" or "none".  | 
k | 
 k for extrapolation.  | 
s | 
 s for extrapolation.  | 
sp | 
 sp for extrapolation.  | 
lambda | 
 a numeric of specifying the type of p-values; Bayesian (lambda=0) Frequentist (lambda=1).  | 
bpk | 
 (experimental for 2-step bootstrap)  | 
xval | 
 specifies x-axis.
"square" for   | 
yval | 
 specifies y-axis. "zvalue" for
  | 
xlab | 
 label for x-axis.  | 
ylab | 
 label for y-axis.  | 
log.xy | 
 character to specify log-scale. "", "x", "y", or "xy".  | 
xlim | 
 range for x-axis.  | 
ylim | 
 range for y-axis.  | 
add | 
 logical for adding another plot.  | 
length.x | 
 the number of segments to draw curves.  | 
main | 
 for title.  | 
col | 
 color for model curves.  | 
lty | 
 lty for model curves.  | 
lwd | 
 lwd for model curves.  | 
ex.pch | 
 pch for extrapolation.  | 
pch | 
 pch for bp points.  | 
cex | 
 cex for bp points.  | 
pt.col | 
 col for bp points.  | 
pt.lwd | 
 lwd for bp points.  | 
legend.x | 
 passed to sblegend as the first argument.  | 
... | 
 further arguments passed to or from other methods.  | 
z | 
 output from previous   | 
y | 
 numeric passed to   | 
inset | 
 inset distance from the margins, which is passed to
  | 
cex.legend | 
 cex for legend  | 
beta | 
 matrix of beta values. beta[,1] is beta0, beta[,2] is beta1.  | 
p | 
 significance level for drawing contour lines.  | 
col.contour | 
 colors for SI, AU, BP.  | 
drawcontours | 
 draw contours when TRUE.  | 
drawlabels | 
 draw labels at contours when TRUE.  | 
labcex | 
 cex for contours.  | 
length | 
 grid size for drawing contours.  | 
lim.countourexpand | 
 expand contour plotting region  | 
Details
The plot method plots bootstrap probabilities and calls the lines
method, which draws fitted curves for models.
Author(s)
Hidetoshi Shimodaira
See Also
Examples
data(mam15)
## a single plot
a <- mam15.relltest[["t4"]] # an object of class "scaleboot"
plot(a,legend="topleft") # x=sigma^2, y=psi
plot(a,xval="inverse",yval="zvalue",
     legend="topleft") # x=1/sigma, y=z-value
plot(a,xval="sigma",log="x",yval="pvalue",
     legend="topleft") # x=log(sigma), y=probability
## plot of extrapolation
plot(summary(a),legend="topleft")
## multiple plots
b <- mam15.relltest[1:15] # an object of class "scalebootv"
plot(b) # x=sigma^2, y=psi