lung73 {scaleboot} | R Documentation |
Clustering of 73 Lung Tumors
Description
Bootstrapping hierarchical clustering of the DNA microarray data set of 73 lung tissue samples each containing 916 observed genes.
Usage
data(lung73)
Format
lung73.pvclust
and lung.pvclust
are objects of class "pvclust"
defined in pvclust of Suzuki and Shimodaira (2006).
lung73.sb
and lung.sb
are an object of class "scalebootv"
of length
72.
Details
The microarray dataset of Garber et al. (2001) is reanalyzed in Suzuki
and Shimodaira (2006), and is found in data(lung)
of
the pvclust package. We reanalyze it, again, by the script shown in
Examples. The result of pvclust
is stored in
lung73.pvclust
and lung.pvclust
, and model fitting to bootstrap probabilities
by the scaleboot package
is stored in lung73.sb
and lung.sb
.
A wide scale range is used in lung73.pvclust and lung73.sb, and the default scale range of pvclust is used in lung.pvclust and lung.sb.
The microarray
dataset is not included in data(lung73)
, but it is found in
data(lung)
of the pvclust package.
Source
Garber, M. E. et al. (2001) Diversity of gene expression in adenocarcinoma of the lung, Proceedings of the National Academy of Sciences, 98, 13784-13789 (dataset is available from http://genome-www.stanford.edu/lung_cancer/adeno/).
References
Suzuki, R. and Shimodaira, H. (2006). pvclust: An R package for hierarchical clustering with p-values, Bioinformatics, 22, 1540-1542 (software is available from CRAN or http://stat.sys.i.kyoto-u.ac.jp/prog/pvclust/).
See Also
Examples
## Not run:
## Parallel setup
library(parallel)
length(cl <- makeCluster(detectCores()))
## script to create lung73.pvclust and lung73.sb
## multiscale bootstrap resampling of hierarchical clustering
library(pvclust)
data(lung)
### default pvclust scales
lung.pvclust <- pvclust(lung, nboot=10000, parallel=cl)
lung.sb <- sbfit(lung.pvclust,cluster=cl) # model fitting
### wider range of scales than pvclust default
sa <- 9^seq(-1,1,length=13)
lung73.pvclust <- pvclust(lung,r=1/sa,nboot=10000,parallel=cl)
lung73.sb <- sbfit(lung73.pvclust,cluster=cl) # model fitting
## End(Not run)
## replace si/au/bp entries in pvclust object
library(pvclust)
data(lung73) # loading the previously computed bootstrap
### the original pvclust result
plot(lung.pvclust, print.pv = c("si", "au", "bp"), cex=0.5, cex.pv=0.5)
pvrect(lung.pvclust, pv="si") # (defualt pvclust uses pv="au")
### default pvclust scales with p-values of k=2
lung.k2 <- sbpvclust(lung73.pvclust,lung73.sb, k=2)
plot(lung.k2, print.pv = c("si", "au", "bp"), cex=0.5, cex.pv=0.5)
pvrect(lung.k2, pv="si")
### wider scales with p-values of k=3 (default of scaleboot)
lung73.k3 <- sbpvclust(lung73.pvclust,lung73.sb)
plot(lung73.k3, print.pv = c("si", "au", "bp"), cex=0.5, cex.pv=0.5)
pvrect(lung73.k3, pv="si")
## diagnostics of fitting
### diagnose edges 61,...,69
lung73.sb[61:69] # print fitting details
plot(lung73.sb[61:69]) # plot curve fitting
summary(lung73.sb[61:69]) # print raw(=bp)/si/au p-values
### diagnose edge 67
lung73.sb[[67]] # print fitting
plot(lung73.sb[[67]],legend="topleft") # plot curve fitting
summary(lung73.sb[[67]]) # print au p-values